Нина Осовицкая - HR #digital #бренд #аналитика #маркетинг

Здесь есть возможность читать онлайн «Нина Осовицкая - HR #digital #бренд #аналитика #маркетинг» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: management, management, management, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

HR #digital #бренд #аналитика #маркетинг: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «HR #digital #бренд #аналитика #маркетинг»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Новая книга из серии «Библиотека hh.ru» об актуальных HR-практиках в России основана на проектах победителей и номинантов конкурса «Премия HR-бренд 2017». Проекты в книге разделены по ключевым направлениям, обозначенным тегами: #digital, #бренд, #новые целевые аудитории, #экология, #масштабный старт и другими.
Аудитория книги: HR, маркетологи, специалисты по коммуникациям, руководители всех уровней.
В формате PDF A4 сохранен издательский макет книги.

HR #digital #бренд #аналитика #маркетинг — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «HR #digital #бренд #аналитика #маркетинг», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вторая задумка, реализуемая «под капотом» нашего сайта, совершит революцию в сфере поиска пассивных кандидатов – не через вакансию, а по базе hh.ru. Применяется похожая модель, как в случае с рекомендацией резюме, но при этом учитываются поисковые запросы и другие параметры, чтобы поднять вверх наиболее релевантных кандидатов.

О. М.:Теперь, благодаря накопленным за многолетнюю историю компании данным, в рамках сайта можно не просто искать соответствия по словам, но и производить скоринг.

Эта база позволяет еще до непосредственного общения (неважно, по телефону, в офлайне или в чат-боте), по психотипу и другим параметрам, дать ответ, в какой степени совместимы профили кандидата и компании.

Многие стартапы утверждают, что они тоже используют ИИ, нейронные сети. Как HR-специалисту, мало разбирающемуся в этой области, предугадать, не являются ли их обещания качественного результата лишь продуманным маркетингом?

Б. В.:Это может сделать даже неспециалист, потому что ключевым является вопрос о количестве данных, которые используются для построения модели машинного обучения.

Когда провайдер оперирует тысячами или даже десятками тысяч резюме и откликов, этого явно недостаточно. Для сравнения, hh.ru использует миллионы и десятки миллионов пар, чтобы выявить наличие сигналов. В упрощенном виде, для подходящих рекомендаций следует иметь в обучающей выборке похожие вакансии и компании с откликнувшимися и далее приглашенными кандидатами. Речь идет об огромном числе вакансий, резюме и взаимодействий между ними.

Далее необходимо поинтересоваться теми подходами, которые используются в процессе разработки ИИ. Эксперты обычно уточняют наличие ключевых слов, а остальные – какая метрика является целевой для обучения моделей, то есть что они оптимизируют.

Например, по отношению к соискателям hh.ru оптимизирует вероятность отклика, а к работодателям – вероятность приглашения. Если вам не смогут ответить даже на такой простой вопрос, продолжать разговор о машинном обучении нет смысла.

Третий момент – как измеряется точность моделей. Неправильных вариантов два: полное отсутствие такой практики либо (что приходится часто слышать) «наша точность – 100 %».

В целом все-таки рекомендую привлечь знающих людей, которые помогут отделить настоящие технологии от тех, которые преподносятся в этом качестве.

О. М.:Нужно внимательно проверять, когда компания вышла на рынок (стартапы чаще всего не имеют доступа к большим массивам данных), на чем она строит машинное обучение и не стремится ли просто поймать хайповую волну. При этом бывает, что новые игроки предлагают по-настоящему интересные решения; пусть там и нет ИИ, свежий взгляд и нестандартные подходы не могут не радовать.

Технологии хороши именно тогда, когда жизнь обычного человека становится проще, и в нашем поиске все сложное спрятано «под капот». В HR не обязательно быть суперпродвинутым айтишником, глубоко разбираться в технических деталях, главное – знать, какие решения лучше выбирать и в какой момент их применять.

Есть ли предположения о том, какие инструменты и методологии появятся в HR-сфере в следующем году?

Б. В.:Пока об этом трудно говорить, но точно продлятся и углубятся тренды, связанные с оптимизацией. Очевидно, что продолжится переход от учета к производительности: вместо того чтобы вводить данные, сохранять их, получать ценность просто за счет избавления от ошибок, неточностей, потери кандидатов и т. п., некоторые этапы работы рекрутера и HR в целом автоматизируются.

Пример с чат-ботами для совершенствования процесса отбора показал, что в этом направлении тоже есть возможности для развития и создания новых инструментов. Через несколько лет конечной видится ситуация, когда целый ансамбль систем машинного обучения будет подсказывать соискателям и рекрутерам, на какие вакансии откликаться и кого брать на работу.

Вообще кейсы, связанные с автоматизацией и аналитикой, все чаще возникают в регионах, а не только в Москве и Санкт-Петербурге. В разрезе масштаба предприятий ожидается, что средний бизнес подтянется к крупному, потому что продукты становятся проще и доступнее. Не нужно платить баснословные деньги за внедрение – достаточно отдать несколько десятков тысяч рублей и сразу начать использовать облачные ATS-системы.

О. М.:Мир слишком быстро меняется, чтобы делать прогнозы, но совершенно ясно, что мы движемся в сторону максимальной автоматизации и умного скоринга. В идеале рекрутер должен подключаться к отбору уже на финальных этапах, а все, что до них, будет проходить быстро и незаметно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «HR #digital #бренд #аналитика #маркетинг»

Представляем Вашему вниманию похожие книги на «HR #digital #бренд #аналитика #маркетинг» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «HR #digital #бренд #аналитика #маркетинг»

Обсуждение, отзывы о книге «HR #digital #бренд #аналитика #маркетинг» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x