Таким образом, система социального кредита бросает вызов неприкосновенности частной жизни с точки зрения как сбора данных посредством широко распространенного наблюдения, так и обмена данными между различными организациями, в том числе между частными и публичными субъектами. Цифровые следы используются не только для целевого маркетинга или улучшения онлайн-сервисов, но и для обучения ИИ и информирования правительства о привычках, деятельности и активности людей. Камеры общественного наблюдения с технологией распознавания лиц предоставляют правительству почти полный и постоянный доступ ко всем общественным пространствам, а цифровое наблюдение с помощью крупных технологических компаний доставляет правительству информацию о частной и общественной жизни граждан. Одноранговое наблюдение дает правительству офлайн-доступ к социальным сферам, которые иным образом были бы недоступны. Использование алгоритмов машинного обучения для обработки данных в дополнение к широко распространенной практике обмена данными приводит к тому, что люди теряют право на монопольное использование своей персональной информации [25] Chen Yon., Cheung A. S. Y. The Transparent Self Under Big Data Profiling: Privacy and Chinese Legislation on the Social Credit System//The Journal of Comparative Law. – 2017.-Vol. 12.-№ 2.-P. 356–378.
.
Кроме того, система социального кредита может привести к дискриминационной практике. Прежде всего, несмотря на планы объединения региональных систем в национальную кредитную систему, местные органы власти и администрации все равно будут определять критерии, по которым станут оцениваться отдельные лица. Из-за отсутствия единого стандарта граждане находятся во власти местных органов. В этом случае крестьяне в сельской местности могут пользоваться иной кредитной схемой, чем жители городских районов. По мере перемещения данных между секторами и учреждениями дефекты в данных в одной базе данных могут быть реплицированы во всех базах данных, через которые эти данные проходят. Тем самым любая предвзятость в данных, которая не будет должным образом «сглажена», будет продолжать находиться в потоке данных, а возможно, даже увеличиваться или изменяться в другом контексте [26] Arsene Severine Trust in Ratings: China’s Social Credit System. http://devl4-7. ysdhk.com/asiaglobalonline/p01/china-social-credit-system/.
.
Необходимо также иметь в виду, что получить полностью объективные данные практически невозможно. Таким образом, маркировка данных в качестве «объективных» или «необработанных» может быть вредной, поскольку она явно игнорирует потенциальную предвзятость данных. Одинаково сложно создать объективный алгоритм машинного обучения, с помощью которого можно обрабатывать данные, ранжировать граждан, а также определять, как алгоритм будет реагировать на новые данные. Ясно, что предвзятость может быть смягчена, но для этого ее существование требуется признать, что нехарактерно для Китая [27] Loge Hanne Haukland Surveillance and human rights in the digital age. A case study of China>s social credit system, https://www.duo.uio.no/hand-le/10852/70583.
.
При этом при анализе больших данных некое пренебрежение к необходимости смягчения предвзятости данных может явиться причиной дискриминационных действий, например предиктивной полицейской деятельности. На микроуровне «подозрительные» корреляции, основанные на прогнозах больших данных, могут быть использованы против отдельных лиц, например, невозможность зачисления детей в частную школу из-за низкого социального рейтинга их родителей (что само по себе является одним из примеров косвенной дискриминации в отношении детей). Однако предвидение рисков не работает на индивидуальном уровне, и такая предиктивная полицейская деятельность, скорее всего, будет представлять собой нарушение права на равенство перед законом. В свою очередь на макроуровне система социального кредита может информировать правительство о тенденциях, общественном мнении и возможных проблемах в обществе, что может помочь правительству в прогнозировании социального контроля и выработке политической стратегии [28] Liang Fan, Das Vishnupriya, Kostyuk Nadiya, and Hussain Muzammil M. Constructing a Data-Driven Society: China’s Social Credit System as a State Surveillance Infrastructure//Policy & Internet. – 2018. —Vol. 10. —Is. 4. —P. 415–453.
.
Приведенный нами обзор касательно китайского варианта обработки данных приводит к выводу о том, что его реализация в Российской Федерации невозможна ввиду очевидного конфликта с правами человека, признанными в подписанных Россией (в отличие от Китая) международных актах и имплементированных в гл. 2 российской Конституции, а также распространившихся в отраслевых актах законодательства.
Читать дальше