Где E g – ширина запрещенной зоны полупроводника, n 1 и n 0 – соответственно неравновесная и равновесная концентрации носителей, N c – плотность состояний.
Другим примером может служить возникающие фотонапряжение при освещении p-n —перехода [2].
которое также не превышает E g . Здесь и – соответственно концентрации электронов в n – области и дырки в р – области. и – энергии уровня Ферми в n – и р – областях.
Исключение из этого правила составляли лишь полупроводниковые текстуры в которых наблюдается эффект аномально больших фото напряжений (АФН эффект), обусловленный сложением элементарных фото-ЭДС Дембера (1) или элементарных фото-ЭДС (2), развивающихся на отдельных р-n —переходах текстуры [3].
В таких текстурах из напиленных слоев CdTe, Ge, Si, GaAs, PbS, CdSe и т. д. фото напряжения могут достигать значений порядка нескольких сотен Вольт на сантиметр длины в направлении сложения элементарных фото-ЭДС (1) или (2).
В последние годы стало ясно, что в термодинамических неравновесных условиях возможны токи иной природы, обусловленные отсутствием среды центра симметрии. Важнейшим этого класса эффекта является аномальный фотовольтаический эффект (АФ эффект).
АФ эффект заключается в том, что при равномерном освещении короткозамкнутого сегнетоэлектрика через него протекает стационарный ток, который в [4,5] был назван фотовольтаическим. Было показано, что именно фотовольтаический ток приводит к аномальному фотовольтаическому эффекту (АФ эффект) в сегнетоэлектрике.
Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [4,5] является частным случаем АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга [5,6]:
Согласно (3), при равномерном освещении линейно поляризованным светом однородного кристаллов без центра симметрии (сегнето, пиро или пъезоэлектрического кристалла) в нем возникает фотовольтаический ток J i , знак и величина которого зависят от ориентации вектора поляризации света с проекциями.
Компоненты тензора a ijk отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток генерирует фотонапряжения
где
и соответственно
темновая и фотопроводимость, расстояние между электродами. Генерируемое фотонапряжения порядка 10 3—10 5В, превышающее величину ширины запрещенной зони E gна два – четыре порядка.
В соответствии с (3) и симметрией точечной группы кристалла можно написать выражения для фотовольтаического тока. Сравнение экспериментальной угловой зависимости ( b ) с (3) позволяет определить фотовольтаический тензор a ijkили фотовольтаический коэффициент
( a * – коэффициент поглошения света).
1. ФОТОВОЛЬТАИЧЕСКИЙ ЭФФЕКТ В ПЬЕЗОЭЛЕКТРИЧЕСКИХ КРИСТАЛЛАХ ZnS
В работе изложен результаты исследования объемного фотовольтаического эффекта в пьезоэлектрических кристаллах ZnS, принадлежащих к кубической точечной группе m.
Исследовались кубические кристаллы ZnS, вырашенные гидротермальным методом в растворах H 3PO 4и KOH в лаборатории гидротермального синтеза института кристаллографии Российской АН.
В отличие от сегнетоэлектриков [4, 5] фотовольтаический эффект в ZnS можно наблюдать только в поляризованном свете [8,9]. В соответствии (3) и симметрией точечной группы при освешении кристалла в z направлении оси 4 порядка (оси z ) выражение фотовольтаического тока в z направлении имеет вид:
Читать дальше