• Пожаловаться

Журнал «Юный техник»: Юный техник, 2015 № 02

Здесь есть возможность читать онлайн «Журнал «Юный техник»: Юный техник, 2015 № 02» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. год выпуска: 2015, ISBN: 0131-1417, категория: Технические науки / periodic / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

Журнал «Юный техник» Юный техник, 2015 № 02

Юный техник, 2015 № 02: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Юный техник, 2015 № 02»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популярный детский и юношеский журнал.

Журнал «Юный техник»: другие книги автора


Кто написал Юный техник, 2015 № 02? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

Юный техник, 2015 № 02 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Юный техник, 2015 № 02», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Нобелевские лауреаты по химии за 2014 год — Эрик Бетциг, Уильям Мернери Стефан Хелл.

Многие эксперты сразу же отметили, что химия как наука в работах лауреатов почти не присутствует. Они на самом деле разработали новую технологию микроскопии, которая скорее применима в биологии, нежели в химии, поскольку теперь появилась возможность разглядеть в клетке отдельные молекулы.

С тех пор как голландец Антон ван Левенгук в 1673 году с помощью изобретенной им лупы, увеличивавшей в 300 (!) раз, открыл невиданный ранее мир бактерий, оптические устройства все совершенствуются. Прибор с одной линзой заменили многолинзовые микроскопы, которые продолжали наращивать предел увеличения до тех пор, пока не натолкнулись на дифракционный предел. Его еще называют пределом Аббе по имени немецкого оптика, открывшего это явление в 1873 году.

Эрнст Аббе установил, что оптический микроскоп не может четко показать объекты, размер которых меньше половины длины световой волны. Длина волны электронов меньше, чем у фотонов, поэтому возможности электронных микроскопов больше, но и перед ними неумолимо встает дифракционный предел. Во многих случаях исследователей выручает атомно-силовой микроскоп, но и его возможности не беспредельны.

«Дифракционный барьер установлен где-то в пределах 200–250 нм — рассказал журналистам доктор биологических наук, заведующий лабораторией Института биоорганической химии РАН Константин Лукьянов. — Флуоресцентная микроскопия преодолевает этот предел, достигая разрешения 20–25 нм, то есть на порядок больше. Это позволяет видеть отдельные структуры, причем в живых клетках, где можно увидеть какие-то внутриклеточные процессы».

Технологически это решается двумя разными способами, но если не вдаваться в детали, суть тут такова. Исследователь вносит в клетку флуоресцентную метку, помечая при этом какую-то определенную структуру, какой-то белок или какое-то событие в клетке. Флуоресцентный краситель при этом возбуждается светом и испускает свет другой длины волны. Например, вы светите синим, а флуоресценция у вас зеленая.

Во флуоресцентном микроскопе есть источник возбуждающего света, система фильтров и детектор. В итоге многие процессы, которые раньше было невозможно увидеть, теперь стали видимыми. За это нужно сказать спасибо Стефану Хеллу. В 1993 году, работая в Финляндии, в Университете Турку, он придумал, как усовершенствовать флуоресцентный микроскоп.

Исследователь предложил использовать два лазера, направленных на образец. Импульс первого лазера вызывает флуоресценцию молекул, а импульс второго — гасит ее у молекул, находящихся на краях изучаемой области. В итоге по центру получается изображение с большим разрешением. В дальнейшем, сдвигая изучаемую область, можно увидеть изображение всего объекта с превосходящим предел Аббе разрешением.

Статья Стефана Хелла, опубликованная в 1994 году в журнале Optics Letters, обратила на себя внимание других исследователей. Ему предложили работу в Институте биофизической химии Общества Макса Планка в Геттингене, где он мог бы реализовать свои теоретические предположения на практике.

Ученый сделал это к 1999 году, построив особый микроскоп. Его метод известен сейчас под названием «STED-микроскопия» (Stinulated Emission Depletion — микроскопия на основе подавления спонтанного испускания). В 2000 году он опубликовал изображения бактерии Escherichia coli с невиданным ранее разрешением.

Другое направление независимо от Хелла развивали американские исследователи Эрик Бетциг и Уильям Мернер. Они разработали методы одномолекулярной флуоресцентной микроскопии (single-molecule fluorescence microscopy).

Обычно при изучении флуоресценции, в частности при использовании этого явления в микроскопии, мы имеем дело с поглощением и испусканием излучения сразу множеством молекул. В 1986 году Мернер сумел впервые измерить поглощение излучения одной-единственной молекулой. Через 8 лет он сделал следующий шаг в своих исследованиях, занявшись изучением зеленого флуоресцентного белка (green fluorescent protein, GFP). При этом он обнаружил, что флуоресценцию в одном варианте GFP можно «включать» и «выключать» по желанию.

Когда белок поглощает свет с длиной волны 488 нм, флуоресценция начинается, но спустя некоторое время исчезает. И, независимо от количества света, направляемого на белок, ответного излучения не возникает. Но, если использовать свет с длиной волны 405 нм, то молекула белка снова начинает флуоресцировать.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Юный техник, 2015 № 02»

Представляем Вашему вниманию похожие книги на «Юный техник, 2015 № 02» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Журнал «Юный техник»: Юный техник, 2015 № 07
Юный техник, 2015 № 07
Журнал «Юный техник»
Журнал «Юный техник»: Юный техник, 2015 № 08
Юный техник, 2015 № 08
Журнал «Юный техник»
Журнал «Юный техник»: Юный техник, 2015 № 09
Юный техник, 2015 № 09
Журнал «Юный техник»
Журнал «Юный техник»: Юный техник, 2015 № 10
Юный техник, 2015 № 10
Журнал «Юный техник»
Журнал «Юный техник»: Юный техник, 2015 № 11
Юный техник, 2015 № 11
Журнал «Юный техник»
Журнал «Юный техник»: Юный техник, 2015 № 12
Юный техник, 2015 № 12
Журнал «Юный техник»
Отзывы о книге «Юный техник, 2015 № 02»

Обсуждение, отзывы о книге «Юный техник, 2015 № 02» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.