1 – рабочая камера; 2 – резиновые прокладки; 3 – обра зец; 4 – контактная сетка; 5 – прижимная плита; 6 – зажимные винты; 7 – краны; 8 – резиновая трубка, соединяющая с водопроводом; 9 – манометр
Рисунок 3 – Устройство для определения водонепроницаемости кровельных и гидроизоляционных материалов
Водопоглощаемость – способность материала впитывать и удерживать воду
(процесс впитывания воды – водопоглощение). Характеризуется количеством воды, которую впитывает и удерживает сухой образец после погружения на 24 часа в воду при температуре 20 °С
m 3– масса образца после суточной выдержки в воде, г;
m 2– масса образца после одноминутной выдержки в воде, г;
m 1– масса образца в сухом состоянии до испытания, г. В ряде случаев определяют объемное водопоглощение.
Водонасыщаемость – свойство материала впитывать воду в поры, в которых предварительно искусственным путем с помощью вакуумнасоса был создан вакуум.
Гигроскопичность – способность материала поглощать влагу из паровоздушной среды, в частности из влажного воздуха. Степень поглощения влаги зависит от относительной влажности и температуры воздуха. За стандартную величину принимают отношение массы влаги, поглощенной при относительной влажности воздуха, равной 100 %, и температуре +20 °C, к массе сухого материала.
В материале пары конденсируются, и влага находится в свободном, капиллярном и связанном (адсорбционно-сольватном) состоянии.
Влагоотдачей называют способность материала отдавать влагу в окружающую среду. Характеризуется количеством воды, теряемой материалом в сутки при относительной влажности воздуха, равной 60 %, и температуре +20 °C.
Гидрофильность и гидрофобность – это способность и неспособность соответственно материала смачиваться водой. Для ГИМ гидрофобность является средством повышения водостойкости, водонепроницаемости и снижения гигроскопичности.
Влажность – содержание влаги, отнесенное к массе материала в сухом состоянии.
2.2.2 Механические свойства
Механические свойства характеризуют способность материала сопротивляться силовым, температурным, усадочным и другим внутренним напряжениям без нарушения установившейся структуры и при полном сохранении сплошности.
Между характером структуры и механическими свойствами наблюдается непосредственная взаимосвязь.
Механические (структурно-механические) свойства разделяются на деформационные и прочностные.
Деформационные свойства характеризуются наличием деформаций; могут быть обратимыми и необратимыми. Обратимые – упругие и эластичные , – характеризуются полным спадом деформаций, соответственно мгновенным или в течение длительного времени после снятия нагрузок. Величина обратимой деформации – важный показатель качества ГИМ, содержащих каучук и другие каучукообразные компоненты.
Необратимые деформации – пластические , ползучесть – не только не исчезают после снятия нагрузки, но могут даже возрастать, например, под влиянием собственной массы (ползучесть).
Под воздействием силовых факторов наблюдаются как обратимые, так и необратимые деформации.
Характер деформации наиболее четко проявляется после снятия нагрузок по величине и продолжительности их спада (упругому последействию).
Графические зависимости деформаций от времени действия нагрузок представлены на рисунке 4.
Пластическая деформация, медленно нарастающая без увеличения напряжений в материале, называется текучестью .
С повышением температуры, уменьшением скорости деформирования, пластическая деформация возрастает (при одинаковой нагрузке).
Ползучесть большинства ГИМ достигает значительных размеров и возрастает с повышением температуры, поэтому деформации ползучести определяются при наивысшей температуре, при которой будет работать материал в конструкции.
При изучении реологических свойств материалов (реология – наука о текучести материалов) пользуются величиной вязкости или обратной ей величиной – текучестью.
Вязкость характеризует внутреннее трение жидкости или сопротивление перемещения одного слоя жидкого вещества относительно другого.
Читать дальше
Конец ознакомительного отрывка
Купить книгу