Но самое удивительное и самое важное не в том, что КПД регенеративных cтирлингов и эриксонов становятся равными. Главное в том, что они становятся равными КПД цикла Карно! А отсюда вытекает, что даже при 600–650 °С теоретический КПД двигателей внешнего сгорания составляет 70%!
Поражает и тот факт, насколько гениальную и остроумную машину создал Роберт Стирлинг еще в XIX веке: принципиальная схема и кинематика ее рабочей части целиком перекочевали в современные модели. Инженеры лишь тщательно изучили процессы регенерации тепла и предложили новые материалы для регенератора, доведя его эффективность до 95–97%. С целью увеличения мощности двигателя внешнего сгорания, а также улучшения компактности со-временные специалисты сделали рабочую часть двигателя изолированной от атмосферы и заполнили ее сжатым газом – гелием или водородом. Это позво-лило в настоящее время в России и весьма широко за рубежом создавать двига-тели внешнего сгорания, способные вступить в жесточайшую конкуренцию с двигателями внутреннего сгорания.
Классификация двигателей Стирлинга
Итак, неотъемлемой частью двигателей внешнего сгорания являются две полости с периодически изменяющимися объемами при различных температурных уровнях. Эти полости, как нам уже известно, соединены между собой посредством регенератора и вспомогательных теплообменников. Двигателями Стирлинга принято в настоящее время называть такие двигатели, в которых управление потоком рабочего тела происходит путем изменения объемов.
По принципу действия они могут быть классифицированы как двигатели одностороннего (простого) и двойного действия. В двигателях одностороннего действия две полости (сжатия и расширения), соединяемые теплообменниками, могут находиться в одном или в двух цилиндрах. В одноцилиндровых двигателях предусмотрены два поршня – рабочий и вытеснительный (рис. 2), а в двухцилиндровых – два рабочих или рабочий и вытеснительный. Каждая из рассмотренных компоновок представляет собой самостоятельные модули, из которых могут быть собраны многоцилиндровые двигатели с передачей мощности на общий коленчатый вал или другой механизм.

Рис. 2. Основные схемы двигателей Стирлинга
одностороннего действия: а – с рабочим поршнем
и вытеснителем в одном цилиндре; б – с рабочим поршнем
и вытеснителем в разных цилиндрах; в – двухпоршневые
(с двумя рабочими поршнями);
1 – рабочий поршень; 2 – вытеснитель;
3 – полость расширения; 4 – полость сжатия;
5 – регенератор; 6 – нагреватель; 7 – холодильник

Рис. 3 Схема работы двигателя двойного действия:
1 – полость расширения; 2 – нагреватель;
3 – регенератор; 4 – холодильник; 5 – полость
сжатия; 6 – рабочий цилиндр; 7 – шток; 8 – газовый тракт
Двигатели двойного действия – это многоцилиндровые двигатели, в которых полости расширения каждого цилиндра последовательно соединены через ряд теплообменников с полостью сжатия соседнего цилиндра. В цилиндре предусмотрен один поступательно движущийся элемент – поршень-вытеснитель. Число таких элементов в двигателе равно числу цилиндров. Большим преимуществом двигателей двойного действия по сравнению с двигателями одностороннего действия является сокращение в 2 раза числа поршней. Это упрощает кинематическую схему приводного механизма и снижает стоимость двигателя (рис. 3).
Все существующие конструкции двигателей Стирлинга можно свести к α-, β- и γ-модификациям (рис. 4). Такая классификация двигателей внешнего сгорания достаточно точно позволяет определить типы двигателей без необходи-мости тщательного изучения деталей конструкции:

Рис. 4. Модификации двигателей Стирлинга:
а – α-модификация; б – β-модификация; в – γ-модификация;
Н – нагреватель; R – регенератор; С – холодильник.
Читать дальше