Интересная аналогия с эффектом Магнуса возникает при рассмотрении электромагнитного явления, известного, как сила Лоренца: на проводник с током, находящийся в магнитном поле, действует сила, в направлении, показанном на рис. 10. О причине появления данной силы, ранее не было однозначного объяснения. Предполагая аналогии с эффектом Магнуса, можно трактовать силу Лоренца, как результат градиента давления эфирной среды. В докладе [1] это было впервые показано, 1996 год.
Рис. 10. Сила Лоренца, как результат градиента давления эфира
Однако, на схеме рис. 10, мы получаем картину, обратную суперпозиции векторов, которая была показана на рис. 8. Сила Магнуса действует на цилиндр, вращающийся в потоке среды, в направлении согласованного движения поверхности цилиндра и среды. На рис. 10 показано, что сила Лоренца действует в направлении встречной суперпозиции векторов. Почему?
Дело в том, что вектора на рис. 10 показаны условно, согласно принятым обозначениям векторов электрического тока (потока положительно заряженных частиц) и магнитного поля. Направление движения реальных потоков электронов и эфирных частиц (вектора магнитных полей) отличаются от условных обозначений. Принципиально, эффект создается аналогично эффекту Магнуса, за счет градиента давления среды, обусловленного разной относительной скоростью, но электромагнитные системы используют эфирную среду, а не воздух или воду.
Важно отметить, что электрон или другая заряженная частица, которая при движении создает магнитное поле, является вращающимся объектом. Было бы точнее, считать ее линейное перемещение винтовой линией, правой или левой спиралью, в зависимости от знака электрического заряда данной частицы материи.
О структуре электрона написано немало, но мне хотелось бы рекомендовать читателю работу отца и сына Поляковых [4]. Данные авторы рассматривали в своей книге «Экспериментальная гравитоника» строение электрона, и показали, что он может быть представлен, как замкнутый на себя фотон круговой поляризации, то есть, как динамический процесс движения электромагнитной волны круговой поляризации в замкнутом тороидальном пространстве. Позже, мы раскроем данный вопрос подробнее. Здесь только коротко отметим, что, при таком рассмотрении, появление магнитного поля, при движении заряженной частицы в эфире, имеет явную аналогию с возмущение физической среды, которое возникает при движении в данной среде вращающегося цилиндра или шара.
Можно сказать, что взаимодействие внешнего магнитного поля, поперек которого движется электрически заряженная частица, с ее собственным магнитным полем, отклоняет частицу таким же образом, как и поток воздуха отклоняет закрученный мяч, а именно, благодаря созданию градиента давления среды на движущуюся в ней частицу материи.
В таком случае, силы Лоренца и силы Ампера являются внешними силами, по отношению к проводникам с током, на которые они действуют, то есть, могут обеспечить их движение в пространстве.
Эти интересные аналогии между аэродинамикой и эфиродинамикой дают много конструктивных идей.
Глава 4 Электрокинетические движители
Исходя из концепции «градиента эфирного давления», рассмотрим эффект Ампера, то есть, явление притяжения или отталкивания проводников с током, рис. 11.
Рис. 11. Эффект Ампера для проводников с током
Известно, что, при согласованном движении токов в параллельных проводниках, они притягиваются, а при встречных токах – отталкиваются. Очевидно, что векторное сложение и вычитание магнитных потоков имеет смысл, как увеличение или уменьшение относительной скорости движения эфирных частиц, что и создает градиент давления эфирной среды. Можно ли построить движитель, использующий данный градиент давления окружающей среды?
Согласно Амперу, результирующая сила, для параллельных проводников, равна нулю. Этот факт, достаточно долгое время, был причиной невнимания изобретателей и конструкторов к технологии создания электрокинетических движителей.
Анализ сил, возникающих в непараллельных проводниках, например, в Y-образном проводнике, был впервые проведен в 1844 году известным физиком – математиком Германом Г. Грассманом. Он показал, что случай параллельных проводников, рассмотренный Ампером, есть только частный случай, а в общем случае, результирующие силы для проводников с током могут быть не равны нулю.
На рис. 12 показаны вектора сил, действующих на участки тока в области Y-образной «вилки», формулу для расчета которых анализировал Грассман. В данном случае, суммарная сила, действующая на Y-образный участок проводников с током, не равна нулю, то есть, проводники образуют Y-образный движитель.
Читать дальше