Рис. 1. Молекулы жидкости непрерывно и хаотически перемещаются (это движение называется Броуновым по имени открывшею его в 1827 году английского ботаника Броуна). Результирующее воздействие их толчков на постороннюю частицу отлично от нуля (а) и перемещается по случайной зигзагообразной траектории (б).
Рис. 2. Капля масла как бы «висит» над поверхностью воды, не смешиваясь с ней (а). А громоздкие молекулы мыла, уменьшающие поверхностное натяжение воды, образуют довольно прочную поверхностную пленку, которую мы и используем, пуская мыльные пузыри (б).
Рис. 3. Испарение — сложный статистический процесс. Он сопровождается не только вылетом из жидкости быстрых молекул, но и обратным «нырянием» недостаточно энергичных. В граничном слое воздух — жидкость эта «суматоха» может приводить к необычным результатам.
Рис. 4. Поверхностям натяжение действует одинаково на любой элемент поверхности. Поэтому ниточная петля, помещенная в мыльную пленку, натянутую на проволочное кольцо, не испытывает никакого воздействия. Но если разрушить ее внутри петли, то силы поверхностного натяжения немедленно растянут ее в правильную окружность.
Особенно удивительным, наводящим на фантастические предположения, представляется поведение на поверхности воды двух разных капель: перфтороктана C 8F 18и дибутилфталата С 6Н 4(СООC 4Н 9) 2, подкрашенного красителем. Вот изложение опыта словами изобретателя.
«Капля C 8F 18или ДБФ на поверхности воды принимает линзовую форму и не двигается. Но если в широком открытом сосуде каплю C 8F 18объемом приблизительно 0,1 см 3и такую же каплю ДБФ поместить на поверхность воды на расстоянии 3–4 см друг от друга, то капли этих химически инертных жидкостей сближаются и начинают в течение нескольких минут интенсивно взаимодействовать в сложном физическом процессе, похожем на поведение живых существ, с трепетной дрожью приближаясь, сливаясь и разделяясь, с выделением пленок и образованием новых капель, до полного испарения одной из жидкостей. Кусочек льда на воде замедляет или совсем прекращает взаимодействие капель».
Что это было? Фрагментик какой-то неизвестной жизни? Все необходимое имелось: углерод, водород, кислород воды. Правда, непонятно — к чему тут фтор?
Впрочем, подождем дальнейших исследований — зачем гадать.
— Так что же? — спросит изумленный читатель. — Новый перпетуум мобиле? Источника энергии нет, а движение — пожалуйста?!
Ну почему же нет источника? А окружающая среда? Скажем, если соорудить трубу от жаркой Сахары до холодных вершин Атласских гор, разве в ней не возникнет тяга для вращения пневмотурбины? Вот и в этих опытах температура жидкости всегда меньше, чем у пара над ней. Эта разница составляет ничтожные доли градуса, но — она есть! А раз есть нагреватель и холодильник, то почему бы не быть энергии?
Значение этих работ трудно переоценить. Взаимодействие жидкостей играет огромную роль в функционировании клеточных мембран, в процессах саморегуляции, специализации клеток, в других тонких явлениях на граничных слоях нанометровой толщины, где состав и плотность частиц меняются на несколько порядков. Как это часто бывает, эксперимент значительно опережает теорию, разработка которой может привести к совершенно новому пониманию термодинамики сложных неравновесных систем. Даже таких, как человек.
А с законами сохранения — все в порядке. Они стоят непоколебимо.
Георгий ЧЕРНИКОВ
Художник В. КОЖИН
В ОЖИДАНИИ СЕНСАЦИИ
Светом дышит каждая былинка
Еще в 1923 году известный советский биолог А.Г.Гурвичобратил внимание на «живой свет» — слабое ультрафиолетовое излучение клеточных тканей. Наблюдая за двумя луковицами, положенными близко друг к другу, но так, чтобы они не соприкасались между собой, исследователь обнаружил, что одно растение на расстоянии способно стимулировать другое. Ученый предположил, что такое воздействие осуществляется посредством так называемых митогенетических лучей, которые составляют основу ультрафиолета.
Читать дальше