У рыб есть лишь внутреннее ухо, а среднее и даже барабанная перепонка отсутствуют. Нехватка важнейших блоков звуковоспринимающей системы привела к представлению, что слух у рыб неразвит и звуки не имеют для них значения. Лишь лет пятьдесят назад их слух был реабилитирован. Оказалось, что рыбы прекрасно слышат низкие звуки от 50 до 2000–5000 герц и активно ими интересуются.
Звук как физическое явление представляет собой регулярные колебательные движения частиц упругой среды, так сказать, волны сжатия, и в виде волн распространяется от места своего возникновения во все стороны пространства, если, конечно, для этого не возникает каких-либо препятствий. При прохождении звуковой волны в зависимости от создаваемого ею давления частицы среды смещаются вперед и назад. От уровня давления звуковых волн зависит сила звука.
При этом существенное значение имеет среда, в которой распространяются звуковые волны. Она оказывает звуковым волнам акустическое сопротивление, что приводит к снижению звукового давления. Вода, особенно морская, в 800 раз плотнее воздуха. Неудивительно, что при одном и том же исходном звуковом давлении интенсивность звуковых волн в воде будет существенно ниже, чем в воздухе.
Скорость распространения звуковых волн не связана ни с причиной, их породившей, ни с их частотой, ни с силой звука или количеством энергии, которую несут звуковые волны. Она зависит только от особенностей среды, в которой звук распространяется. В воде он бежит в четыре с лишним раза быстрее, чем в воздухе. За секунду звук покрывает более полутора километров.
Длина звуковой волны находится в пропорциональной зависимости от скорости звука. Чем большее расстояние за единицу времени пробежит звук, тем длиннее должны быть волны. Поэтому при одинаковой частоте звуковая волна, распространяясь в воздухе, будет в 4,5 раза короче, чем в воде. Например, длина волны ультразвука с частотой 50 килогерц, то есть 50 000 колебаний в секунду, равна в воздухе 6,8, а в воде — 31 миллиметру. Чтобы животное восприняло звук, нужно вызвать колебание специальных структур его звукоприемника. Это происходит за счет энергии, переносимой от источника звука с помощью звуковых волн. Поэтому интенсивность — важнейшая характеристика звука. Человек улавливает звуки при смещении мембраны улитки всего на десятимиллиардную долю миллиметра!
Тело рыб прозрачно для звуков. Значительно хуже проводят звук отолиты внутреннего уха, твердые образования, соединенные с волосками рецепторных клеток. Поэтому именно отолиты отзываются колебаниями на приход звуковой волны и с помощью волосков возбуждают чувствительные клетки.
Отсутствие среднего уха, где происходит усиление звуков, серьезный недостаток. Он компенсируется наличием плавательного пузыря, осуществляющего функцию барабанной перепонки и с помощью 4 пар костных рычажков передающего звуковые колебания во внутреннее ухо. Плавательный пузырь, кроме того, способен трансформировать высокочастотные волны в колебания более низкой частоты. Таким образом, этот орган повышает чувствительность слухового аппарата и расширяет диапазон воспринимаемых звуков.
Рыбы, имеющие плавательный пузырь, способны воспринимать звуковые колебания частотой до 8 килогерц и замечают разницу между звуками, отличающимися друг от друга по частоте всего на 3 процента. Беспузырные рыбы такими талантами не обладают. Их восприятию доступны звуковые волны лишь до 2–3 килогерц, а различать их они способны лишь при 10-процентной разнице. В восприятии самых низких звуков до 500–600 герц у рыб принимают участие и другие рецепторы, о чем будет отдельный разговор.
Пространственный слух — важнейшее свойство звуковоспринимающего аппарата. Для животных важно не только, кто или что является источником звуковых волн, но и где находится возмутитель спокойствия. Это удается определить благодаря совместной работе обоих ушей.
Обычно звуковая волна сначала попадает в ухо, ближайшее к источнику звука, а немного позже добирается и до второго. Разница во времени — главный источник информации о месте возникновения звука. Диаметр человеческой головы в среднем 18, окружность 56–58 сантиметров. Если в момент подхода звуковой волны человек стоит к ней боком, звук, обегая череп, чтобы достичь противоположного уха, должен покрыть расстояние в 28 сантиметров. Один сантиметр звуковая волна проходит за 30 микросекунд. На весь путь потребуется 840. Немного, но мы замечаем и гораздо меньшую разницу. Когда источник звука находится на 3 градуса правее средней линии тела, звук до левого уха доберется с запозданием всего в 30 микросекунд. Мы способны оценить эту разницу и, оперируя ею, достаточно точно определить, откуда раздался звук.
Читать дальше