В фазоинверторе с трансформатором два управляющих напряжения получаются благодаря разделению вторичной обмотки на две равные части. А противофазными эти напряжения становятся потому, что заземлена средняя точка вторичной обмотки. Когда на верхнем (по схеме) ее конце появляется «плюс» относительно средней точки, на нижнем конце относительно этой точки оказывается «минус». А поскольку напряжение переменное, то «плюс» и «минус» все время меняются местами (рис. 108).
Рис. 108. Фазоинвертор создает два переменных напряжения, сдвинутых по фазе на 180°.
Трансформаторный фазоинвертор прост и надежен, его практически не нужно налаживать. Двухтактный усилитель для транзисторного приемника или небольшой радиолы можно собрать не только по схеме рис. 45, но и по одной из схем усилителя НЧ промышленного приемника. Например, по схеме приемников «Альпинист», «Нева-2», «Спидола» и др.
Желание избавиться от трансформаторов привело к созданию нескольких более сложных схем двухтактных усилителей. Одна из них приведена на рис. 104— 6 .
рис. 104— 6
Как видите, на этой схеме нет ни выходного трансформатора, с помощью которого осуществляется «сшивание» двух половинок сигнала, ни трансформатора фазоинвертора (его часто называют согласующим трансформатором), с помощью которого на двухтактный каскад подаются два противофазных управляющих напряжения.
Как же решаются эти задачи в безтрансформаторном усилителе? В данном случае они решаются благодаря применению транзисторов с разной структурой — транзисторов типа n-р-n и р-n-р . Транзисторы n-р-n в сравнении с транзисторами р-n-р , если можно так сказать, делают все наоборот (рис. 104— 6 , 109).
Рис. 109. Если в двухтактном каскаде работают транзисторы с разной структурой (проводимостью), то можно обойтись и без фазоинвертора.
В частности, на коллектор им нужно подавать не «минус», а «плюс». Отпирает эти транзисторы уже не отрицательное, а положительное напряжение. Это значит, что на таких разных транзисторах можно собрать двухтактный выходной каскад без всякого фазоинвертора и подавать на их базы одно и то же управляющее напряжение, один и тот же сигнал. Отрицательный полупериод этого напряжения будет отпирать транзистор р-n-р ( Т 3 ), а положительный полупериод будет отпирать транзистор n-р-n ( Т 4 ), и таким образом транзисторы будут работать поочередно.
В коллекторной цепи транзисторов с разной структурой токи тоже, движутся в разных направлениях. И благодаря этому один из транзисторов создает положительную «половинку» выходного сигнала, а второй транзистор — отрицательную.
Однако это еще не дает права исключить из схемы выходной трансформатор: кроме «сшивания» сигнала, у него есть еще одна функция — согласование высокого выходного сопротивления транзистора с малым сопротивлением громкоговорителя (рис. 83). Кто же берет на себя эту роль выходного трансформатора? Никто. Просто выходной каскад собран по схеме ОК, а одна из главных ее особенностей — низкое выходное сопротивление. Таким образом, в какой-то степени пожертвовав усилением (схема ОК усиливает хуже, чем ОЭ), удается обойтись без выходного трансформатора.
Несколько слов о «мелких» особенностях схемы (рис. 104— 6 ).
В цепь эмиттера транзистора Т 1 включено два резистора, причем только один из них зашунтирован конденсатором. Этот резистор R 4 выполняет уже знакомые нам обязанности в системе термостабилизации, а второй резистор — R 5 — является элементом обратной связи. Причем не только связи, охватывающей первый каскад, — на резистор R 5 через R 13C 9 подается напряжение обратной связи с выхода усилителя и таким образом появляется цепочка обратной связи, охватывающая сразу все усилительные каскады.
Отрицательная обратная связь хотя и уменьшает общее усиление, зато в значительной степени снижает искажения, особенно те, что возникают в выходном каскаде в процессе «сшивания» сигнала. Одна из возможных причин таких искажений— некоторая неодинаковость параметров транзисторов, работающих в двухтактной схеме. Из-за этой неодинаковости «половинки» выходного сигнала немного различаются и форма сигнала оказывается несколько искаженной.
Читать дальше