Н. — Прекрасно! Отныне в своих рассуждениях я буду вправе не принимать в расчет ионизированные атомы и заниматься только электронами и дырками.
Л. — Это вполне законно, и я добавлю, что к счастью ионы в полупроводниках не перемещаются. В противном случае проводимость различных областей транзистора с течением времени могла бы изменяться, что сократило бы продолжительность его службы. Что касается электронов, то они непрерывно обновляются, потому что источник напряжения инъецирует их с одной стороны и отбирает с другой, что порождает новые дырки. Это означает, что мы не обнаружили никаких причин, ограничивающих срок службы транзисторов.
Эйнштейн был прав
Н. — Чудесно, но поговорим еще об электронах и дырках. Я хотел бы знать, как они сосуществуют, не нейтрализуя друг-друга. Ведь разноименные заряды взаимно притягиваются.
Л. — Подумай, Незнайкин, о колоссальных расстояниях (разумеется, в атомных масштабах), которые разделяют большинство этих частиц. Электрону удается пробежать путь, во много сотен раз превышающий расстояние между атомами. В человеческих масштабах в среднем это всего лишь десять тысячных миллиметра, но для электрона это космические расстояния. Ты понимаешь, что в этих условиях у него нег шансов встретить дырку, и в действительности электроны и дырки всегда сосуществуют.
Н. — Да, ты мне объяснил, что даже при нормальной температуре имеется известное тепловое движение, отрывающее электроны у многих атомов, чтобы бросить их в межатомное пространство.
Л. — В кубическом сантиметре «чистого» германия при обычной температуре имеется около двадцати пяти тысяч миллиардов свободных электронов и, естественно, столько же дырок, так как место, оставленное электроном, не что иное, как дырка. Эти пары носителей зарядов после определенной продолжительности жизни рекомбинируют, но все время создаются и новые пары, так что в кристалле удерживается статистическое равновесие процессов генерации и рекомбинации пар электрон — дырка.
Н. — А если германий не «чистый»? Если мы, например, введем в него примеси типа n ?
Л. — B этом случае свободных электронов будет больше, чем дырок. Поэтому в материале типа и электроны называются основными носителями зарядов.
Н. — Я догадываюсь, что в полупроводнике типа р более многочисленны дырки и потому здесь они должны считаться основными носителями… Эйнштейн решительно был прав: все относительно.
Транзистор структуры р-n-р
Л. — Теперь, когда я удовлетворил твое любопытство, не можешь ли ты в свою очередь ответить мне на вопрос, который я задал в конце нашей прошлой беседы: как работает транзистор структуры р-n-р (рис. 28)?
Рис. 28. Распределение носителей зарядов (электронов и дырок) и ионизированных атомов в транзисторе структуры р-n-рдо включения напряжений питания. На рисунке видны потенциальные барьеры, образованные ионами с разноименными зарядами.
Н. — Я думал об этом, и мне кажется, что я могу тебе ответить. В таком транзисторе в отличие от транзистора структуры n-р-n коллектор нужно сделать отрицательным по отношению к эмиттеру. Я должен тебе признаться, что это мне очень неприятно.
Л. — Почему же?
Н. — Потому что я всегда сравниваю транзистор с электронной лампой, и идея сделать анод отрицательным по отношению к катоду (ведь именно их роль выполняют соответственно коллектор и эмиттер) меня несколько разочаровывает. Тот факт, что база должна быть отрицательной по отношению к эмиттеру, радует мое сердце, так как я думаю, разумеется, о сетке.
Л. — Незнайкин, остерегайся таких сопоставлений, я уже говорил тебе об этом.
Н. — Как бы там ни было, но при таком распределении напряжений переход эмиттер — база питается в проводящем направлении. Это значит, что отталкиваемые положительным полюсом источника питания дырки эмиттера неудержимо устремляются через р-n переход в базу. Благодаря малой толщине базы большинство дырок успевает проскочить через нее и проникает в коллектор, не прореагировав на слабое напряжение отрицательного полюса батареи Е б-э .
Читать дальше