Н. — Так ведь это просто здорово, если первоначальный ток так мал. Почему же ты сказал «к сожалению»?
Л. — Поэтому что эти фотоэлементы годятся лишь для воспроизводящей головки звукового кинопроекта. Ты, вероятно, знаешь, что в звуковом кино звук чаще всего записывается в виде «звуковой дорожки» — узкой полоски переменной прозрачности, идущей по краю кинопленки. При демонстрации фильма эта дорожка проходит между лампой Л (рис. 23) и фотоэлементом Ф .
Рис. 23. С одного края кинопленки находится звуковая дорожка переменной прозрачности. При движении пленки в кинопроекторе звуковая дорожка в большей или меньшей степени ослабляет световые лучи, идущие от лампы Лк фотоэлектрическому элементу Ф; таким образом воспроизводится ток низкой частоты звукового сопровождения.
Промодулированный дорожкой свет попадает на фотоэлемент, который и преобразует его в электрические сигналы; последние поступают на усилитель. На протяжении многих лет газонаполненные фотоэлементы вытесняли все другие. Однако они очень недолговечны; их чувствительность изменяется во времени и зависит от температуры, а из-за запаздывания ионизации или деионизации они не могут правильно воспроизводить очень быстрые изменения света (уже на частоте 10 кгц они создают потери 3 дб)…
Н. — Достаточно, не выдвигай других обвинений. Для меня газонаполненные фотоэлементы осуждены окончательно и без права обжалования приговора. И сожалею только о том, что, кроме вакуумных фотоэлементов, нет никаких других приборов, чувствительных к свету.
Светочувствительные приборы
Л. — Твои сожаления совершенно излишни. Уже существует великое множество светочувствительных приборов. В первую очередь следует назвать фоторезисторы; некоторые вещества, в частности сульфид свинца, сульфид кадмия, а также селениды и антимониды, после соответствующей обработки обладают определенным электрическим сопротивлением, изменяющимся в зависимости от освещения. Но из этих веществ не всегда можно сделать настоящие резисторы; некоторые из них представляют собой полупроводники (протекающий по ним ток не пропорционален приложенному напряжению). Кроме того, они могут отличаться большой инерционностью (несколько десятых долей секунды). Поэтому фоторезисторы мало пригодны для измерения света, но прекрасно служат, когда нужно включить реле (рис. 24).
Рис. 24. При освещении фоторезистора его сопротивление снижается, и проходящий по нему ток может без дополнительного усиления включить реле.
Н. — Я думаю, что это как раз то, чего мне не хватало для моей системы охраны ювелирного магазина от воров.
Л. — Совершенно верно, особенно если учесть, что фоторезисторы достаточно чувствительны к инфракрасным лучам.
Н. — Опять эти инфракрасные лучи! Что это такое и как их получают?
Л. — Здесь нет ничего таинственного. Инфракрасные лучи располагаются в спектре немного дальше красных лучей в сторону более низких частот (более длинных волн). Наш глаз не может их увидеть, но некоторые фотоэлементы, чувствительны к ним так же, как к видимому свету. Для получения инфракрасных лучей используют простую лампу накаливания и фильтр, задерживающий все видимые световые лучи и пропускающий только инфракрасные. Таким образом, ты можешь получить луч невидимого света, который можно обнаружить вакуумным фотоэлементом с катодом, чувствительным к инфракрасным лучам; такой катод состоит из слоя цезия, нанесенного на пластинку из окиси серебра. Обычно фирмы, выпускающие фотоэлементы, называют эти катоды «катодами Si». Ты можешь также использовать фоторезистор, и никто не сможет увидеть твоей системы предупреждения.
Н. — Это, действительно, очень практично. Назови мне, пожалуйста, другие преобразователи света — я догадываюсь, что их должно быть немало!
Читать дальше