При этом, однако, приходится платить. Все емкости соединяемых параллельно ПТ складываются, в результате чего высокочастотные характеристики (включая коэффициент шума) ухудшаются. На практике подключение дополнительных транзисторов необходимо прекратить, как только входная емкость схемы сравняется с емкостью источника. Если вас волнуют характеристики на высоких частотах, выбирайте ПТ с большой g m и малой С 3C ; можно рассматривать отношение g m / С 3C как меру качества на высоких частотах, Следует отметить, что важную роль может играть также конфигурация схемы; например, чтобы исключить эффект Миллера (умножение за счет коэффициента усиления) относительно С 3C , можно применить каскодную схему.
МОП-транзисторы обычно имеют намного большие значения шума напряжения, чем ПТ с p-n -переходом, причем преобладает шум 1/ f , так как спад 1/ f лежит у них в диапазоне достаточно высоких частот: от 10 до 100 кГц. По этой причине МОП-транзисторы обычно не используют в малошумящих усилителях на частотах, меньших 1 МГц.
Шум тока ПТ с p-n -переходом. На низких частотах шум тока /ш крайне мал; он возникает из дробового шума тока утечки затвора (рис. 7.53):
i ш. эфф= (3,2·10 -19 I 3утB) 1/2А.
Рис. 7.53. Зависимость входного тока шума от тока утечки затвора для ПТ с p-n-переходом.
( National Semiconductor Corp.)
Кроме того, в некоторых ПТ присутствует компонента фликкер-шума. Шум тока растет с ростом температуры, как ток утечки затвора. Обратите внимание на быстрый рост утечки затвора у n -канального ПТ с p-n -переходом, при больших значениях U C3 (см. разд. 3.09 ).
На средних и высоких частотах есть еще одна компонента шума, а именно действительная часть входного полного сопротивления со стороны затвора. Эта составляющая обусловлена действием емкости обратной связи (эффектом Миллера) при сдвиге фазы на выходе, порожденном емкостью нагрузки; иначе говоря, часть выходного, сигнала, сдвинутая по фазе на 90°, проходя через емкость обратной связи С 3C , создает эффективное сопротивление на входе
R= (1 + ω C нR н)/(ω 2 g mC 3CC нR 2 н ) Ом.
Например, p -канальный ПТ с p-n -переходом 2N5266 имеет ток шума 0,005 пА/Гц 1/2и напряжение шума еш12 нВ/Гц 1/2- то и другое при I СИ нас и на частоте 10 кГц. Ток шума начинает ползти вверх при частоте около 50 кГц. Эти значения примерно в 100 раз лучше по i ш и в 5 раз хуже по е ш , чем соответствующие значения рассмотренного ранее 2N5087.
С помощью ПТ можно получить хорошие шумовые параметры в диапазоне полного сопротивления от 10 кОм до 100 МОм. Предусилитель фирмы PAR модели 116 имеет коэффициент шума 1 дБ и лучше при полном сопротивлении источника от 5 кОм до 10 МОм в диапазоне частот от 1 до 10 кГц. Этот предусилитель на умеренных частотах имеет напряжение шумов 4 нВ/Гц 1/2и ток шумов 0,013 пА/Гц 1/2.
7.16. Выбор малошумящих транзисторов
Как упоминалось раньше, биполярные транзисторы из-за малого входного шума напряжения имеют наилучшие шумовые параметры при малых значениях сопротивления источника. Шум напряжения е ш уменьшается путем выбора транзистора с малым объемным сопротивлением базы r б и режима работы с большим током коллектора (пока h 21Э остается большим). При больших сопротивлениях источника надо, наоборот, уменьшать шум тока путем снижения тока коллектора.
При большом сопротивлении источника лучшим выбором является ПТ. Его шум напряжения может быть уменьшен увеличением тока стока до такого значения, когда крутизна будет наибольшей. ПТ, предназначенные для работы в малошумящих устройствах, имеют большое значение k (см. разд. 3.04 ), что обычно означает большую входную емкость.
Например, у малошумящего 2N6483 емкость С зи = 20 пФ, а у слаботочного ПТ 2N5902 емкость С зи = 2 пФ. На рис. 7.54 и 7.55 показаны сравнительные шумовые характеристики некоторых распространенных и широко используемых транзисторов.
Рис. 7.54. Входные шумы для некоторых популярных биполярных транзисторов. а— зависимость входного напряжения шума е шот тока коллектора; б— зависимость входного тока шума i шот тока коллектора; в— зависимость входного тока шума от частоты.
Читать дальше