Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь

Здесь есть возможность читать онлайн «Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2004, ISBN: 2004, Издательство: Горячая линия-Телеком, Жанр: sci_radio, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

...И мир загадочный за занавесом цифр. Цифровая связь: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «...И мир загадочный за занавесом цифр. Цифровая связь»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.
Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.

...И мир загадочный за занавесом цифр. Цифровая связь — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «...И мир загадочный за занавесом цифр. Цифровая связь», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Еще не так давно был распространен счет по дюжинам (т. е. число 12), дюжинам дюжин — "гроссам", дюжинам гроссов — "массам" для белья, посуды, писчебумажных товаров. Дома у нас сервизы содержат по 12 чашек, 12 блюдец, 12 тарелок.

О широком распространении двенадцатеричной системы свидетельствуют такие факты: мы до сих пор делим год на 12 месяцев; у англичан в системе мер 1 фут равен 12 дюймам, а в денежной системе 1 шиллинг равен 12 пенсам. Число 12 часто встречается также в сказках и легендах (12-главый змей, 12 братьев-разбойников), что говорит о древнем происхождении этой системы счисления.

Посмотрим, как будет представлено в ней число 777. Поскольку в системе должно быть двенадцать цифр, а мы знаем только десять, то придется ввести еще две цифры, обозначив 10, скажем, буквой А, а 11 — буквой Б. Осуществив последовательное деление нашего числа на основание 12, получим

(777) 10= 5∙12 2+ 4∙12 + 9= ( 549) 12

Число (35) 10=2∙12 + 11 запишется как (2Б) 12, а число (134) 10= 11∙12 + 2 - как (Б2) 12, т. е. оно станет двузначным.

Как видите, можно придумать много различных позиционных систем счисления, отличающихся только основаниями. И вес они, вообще говоря, равнозначны: ни одна из них не имеет явных преимуществ перед другой! Так почему же все-таки мы пользуемся именно десятичной системой счисления?

Вряд ли можно дать на этот вопрос исчерпывающий ответ. Одну из причин мы указали - 10 пальцев на руках человека. Возможно, системы с низким основанием (например, пятеричная) оказались менее пригодными, чем десятичная, потому что в них даже сравнительно небольшие числа выражались довольно громоздко. Или, может быть, использование системы с высоким основанием, таких как двадцатеричная или шестидесятеричная, не оправдалось на практике, поскольку требовалось запоминать большое число особых слов - названий низших числительных. Вероятно, поэтому в процессе естественного отбора в подавляющем большинстве случаев выжила система счисления с основанием "средней" величины, т. е. десятичная.

Число 2 - это самое меньшее из чисел, которое можно взять за основание системы счисления. Поэтому в двоичной системе счисления всего две цифры: 0 и 1. С их помощью можно "сосчитать" любые числа. Ведь мы уже убедились в том, что системы счисления с любым основанием равноправны.

Число в двоичной системе запишется так:

M = a n∙2 n+ a n-1∙2 n-1+ ... + a 1∙2 + a 0

Если в десятичной системе "вес" каждой позиции (или разряда) числа равен 10 в некоторой степени, то в двоичной системе вместо числа 10 используется число 2. "Веса" первых 13 позиций (разрядов) двоичного числа имеют следующие значения:

Попробуем записать уже привычное нам число 777 10в двоичной системе - фото 8

Попробуем записать уже привычное нам число (777) 10в двоичной системе счисления. Мы сможем легко сделать это, вспомнив принцип последовательного деления числа на основание системы, в данном случае числа 777 на число 2:

Представляя наше число в виде разложения по степеням двойки и отбрасывая потом - фото 9

Представляя наше число в виде разложения по степеням двойки и отбрасывая потом при записи сами степени, получаем его запись в двоичной системе:

(777) 10= 1∙2 9 + 1∙2 8 + 0∙2 7 + 0∙2 6 + 0∙2 5 + 0∙2 4 + 1∙2 3 + 0∙2 2 + 0∙2 + 1 = ( 1100001001) 2

Итак, в двоичной системе счисления вместо числа 777 приходится писать число 1100001001.

Другой пример: десятичное число (45) 10имеет двоичную запись (101101) 2.

При записи числа в десятичной системе каждая позиция занята десятичной цифрой. Аналогично при записи числа в двоичной системе каждая позиция занята двоичной цифрой. В научном мире вместо двух слов "двоичная цифра" употребляют одно слово: "бит". Оно произошло от английского bit, составленного из начальных и конечной букв словосочетания binary digit, что в переводе означает "двоичная цифра". Мы можем сказать, что двоичная запись числа (45) 10содержит шесть бит, а числа (777) 10- десять бит.

С помощью одного бита можно записать только числа 0 и 1, двух бит - числа от 0 до 3, трех бит - числа от 0 до 7, четырех бит — числа от 0 до 115 и т.д.

Чтобы записать числа от 0 до 1000 пот ребуется десять бит В двоичной системе - фото 10

Чтобы записать числа от 0 до 1000, пот ребуется десять бит. В двоичной системе счисления даже сравнительно небольшое число занимает много позиций.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «...И мир загадочный за занавесом цифр. Цифровая связь»

Представляем Вашему вниманию похожие книги на «...И мир загадочный за занавесом цифр. Цифровая связь» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «...И мир загадочный за занавесом цифр. Цифровая связь»

Обсуждение, отзывы о книге «...И мир загадочный за занавесом цифр. Цифровая связь» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x