Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Оцифровка

Основной принцип оцифровки любых сигналов очень прост и показан на рис. 10.1, а . В некоторые моменты времени t 1, t 2, t 3мы берем мгновенное значение аналогового сигнала и как бы прикладываем к нему некоторую меру, линейку, проградуированную в двоичном масштабе. Обычная линейка у нас содержит крупные деления (метры), поделенные каждое на десять частей (дециметры), каждая из которых также поделена на десять частей (сантиметры), и т. д. Двоичная линейка содержала бы деления, поделенные пополам, затем еще раз пополам и т. д. — сколько хватит разрешающей способности. Если вся длина такой линейки составляет, допустим, 2,56 метра, а самое мелкое деление 1 см (т. е. мы можем померить ей длину с точностью не хуже 1 см, точнее, даже половины его), то таких делений будет ровно 256 и их можно представить двоичным числом размером 1 байт или 8 двоичных разрядов.

Рис. 10.1. Оцифровка аналоговых сигналов:

а— основной принцип; б— к теореме Котельникова-Найквиста

Ничего не изменится, если мы меряем не длину, а напряжение или сопротивление, только смысл понятия «линейка» будет несколько иной. Так мы получаем последовательные отсчеты величины сигнала x 1, x 2, x 3. Причем заметьте, что при выбранной разрешающей способности и числе разрядов мы можем померить аналоговую величину не больше некоторого значения, которое соответствует выбранному масштабу. Иначе придется или увеличивать число разрядов (длину линейки), или менять разрешающую способность в сторону ухудшения (растягивать линейку). Все изложенное и есть сущность работы аналого-цифрового преобразователя (АЦП).

На рис. 10.1, а график демонстрирует этот процесс во времени. Если мы меряем какую-то меняющуюся во времени величину, то приходится производить измерения регулярно. Если стоит задача потом восстановить первоначальный сигнал, то эти измерения удобно проводить со строго равными промежутками времени между ними — иначе нам будет трудно узнать, какому измерению какой момент сигнала соответствует. Получаем массив чисел, который и представляет наш исходный сигнал в цифровом виде. Зная частоту дискретизации (частоту оцифровки) и принятый масштаб (т. е. какому значению физической величины соответствует максимальное число в принятом диапазоне двоичных чисел), мы всегда можем восстановить исходный сигнал, просто отложив точки на графике и соединив их плавной линией.

Но что-то мы при этом теряем? Посмотрите на рис. 10.1, б , который иллюстрирует знаменитую теорему Котельникова (как водится, за рубежом она носит другое имя — Найквиста, на самом деле они оба придумали ее независимо друг от друга). На этом рисунке показана синусоида предельной частоты, которую мы еще можем восстановить, располагая массивом точек, полученных с частотой дискретизации f д. Так как в выражении для синуса A ∙sin(2π ft ) имеется два независимых коэффициента ( А — амплитуда и f — частота), то для того, чтобы вид кривой восстановить однозначно, нужно как минимум две точки на каждый период (если сами параметры синусоиды А и f не меняются во времени, то достаточно вообще двух точек на всем интервале времени; именно такой случай показан на графике рис. 10.1, б ), т. е. частота оцифровки должна быть как минимум в два раза больше, чем самая высокая частота в спектре исходного аналогового сигнала . Это и есть теорема Котельникова — Найквиста.

Попробуйте сами нарисовать другую синусоиду без сдвига по фазе, проходящую через указанные на графике точки, и вы убедитесь, что это невозможно. В то же время можно нарисовать сколько угодно разных синусоид, проходящих через эти точки, если их частота в целое число раз выше частоты дискретизации f д. В сумме эти синусоиды, или гармоники (т. е. члены разложения сигнала в ряд Фурье), дадут сигнал любой сложной формы, но восстановить их нельзя, и если такие гармоники присутствуют в исходном сигнале, то они пропадут навсегда. Следовательно, процесс оцифровки равносилен действию ФНЧ с прямоугольным срезом характеристики на частоте, равной ровно половине частоты дискретизации .

Займемся обратным преобразованием. В сущности, никакого преобразования цифра— аналог в цифроаналоговых преобразователях (ЦАП), которые мы будем здесь рассматривать, на самом деле не происходит: просто мы выражаем двоичное число в виде пропорциональной величины напряжения, т. е. занимаемся, с точки зрения теории, всего лишь преобразованием масштабов и физическим моделированием абстрактной величины — числа. Вся аналоговая шкала поделена на кванты — градации, соответствующие разрешающей способности нашей двоичной «линейки». Если максимальное значение сигнала равно, к примеру, 2,56 В, то при восьмиразрядном коде мы получим квант в 10 мВ, и что происходит с сигналом между этими значениями, и в промежутки времени между отсчетами, мы не знаем и узнать не можем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x