Если взять ряд последовательных отсчетов некоего сигнала, (например, как на рис. 10.1, a ), то мы в результате получим ступенчатую картину (рис. 10.2).
Рис. 10.2. Восстановление оцифрованного сигнала с рис. 10.1, а
Если вы сравните графики на рис. 10.1, а и 10.2, то увидите, что второй график представляет первый, мягко говоря, весьма приблизительно. Для того чтобы повысить степень достоверности полученной кривой, следует, во-первых, брать отсчеты почаще, во-вторых, увеличивать разрядность. Тогда ступеньки будут все становиться меньше и меньше, и есть надежда, что при некотором достаточно высоком разрешении, как по времени, так и по уровню, кривая станет, в конце концов, неотличима от непрерывной аналоговой линии. Есть и еще один способ получения гладкой кривой — пропустить полученный сигнал через ФНЧ, в результате чего ступеньки сгладятся. (Практически это равносильно вычислению промежуточных значений методом интерполяции, считая, что от отсчета к отсчету кривая меняется по линейному или какому-нибудь еще закону.) Конечно, ФНЧ — это лишь грубая полумера, и увеличения разрядности и частоты отсчетов не заменяет.
Все изложенное касается дискретизации аналоговых сигналов во времени. Но здесь нас будет больше занимать не временной ряд оцифрованных сигналов, а получение каждого отдельного значения этого ряда — как же реализовать на практике упомянутую ранее двоичную линейку?
ЦАП
Начнем мы с конца, т. е. с цифроаналоговых преобразователей. Будем считать, что на входе мы имеем числа в двоичной форме — неважно, результат оцифровки сигнала или синтезированный код. Нам его нужно преобразовать в аналоговый уровень напряжения в соответствии с выбранным масштабом.
Самый простой ЦАП — десятичный или шестнадцатеричный дешифратор-распределитель, подобный 561ИД1 (см. рис. 8.7). В самом деле, если на него подать четырехразрядный код, то на выходе мы получим значения в десятичной или шестнадцатеричной форме — для каждого значения кода на отдельном выводе. Присоединив к выходам этого дешифратора линейку светодиодов, получаем полосковый (шкальный) индикатор, который с разрешением в 10 или 16 ступеней на весь диапазон будет показывать уровень некоей величины. Иногда этого достаточно.
На самом деле это, конечно, еще не настоящий ЦАП, а только его часть — он не делает операции, показанной на рис. 10.2, а лишь отображает цифровую величину наглядно. Преобразовать выход дешифратора-распределителя в уровень напряжения теоретически несложно: для этого надо выстроить делитель из цепочки одинаковых резисторов, подключить его к источнику опорного напряжения и коммутировать отводы этого делителя ключами, управляемыми от дешифратора-распределителя. Для двух- или трехразрядного кода можно использовать описанные в главе 8 мультиплексоры типа 561КП1 и 561КП2.
Но для большего числа разрядов такой ЦАП с непосредственным преобразованием превращается в совершенно чудовищную конструкцию. Для восьмиразрядного кода потребовалось бы 256 резисторов (строго одинаковых!), столько же ключей и дешифратор с таким же числом выходов, а ведь восьмиразрядный код — довольно грубая «линейка», разрешающая способность ее не превышает четверти процента. Поэтому на практике такой метод употребляют для построения АЦП, а не ЦАП (потому что, несмотря на сложность, он обладает одним уникальным свойством, о котором поговорим далее), а здесь мы даже не будем рисовать такую схему.
Рассмотрим один из самых распространенных методов, который позволяет осуществлять преобразование «код — напряжение» не прибегая к подобным «монструозным» конструкциям.
На рис. 10.3, а показан вариант реализации ЦАП на основе ОУ с коммутируемыми резисторами в цепи обратной связи. Самим нам строить такие ЦАП, конечно, не придется, но для любителей укажу, что в качестве коммутирующих ключей можно применить, например, малогабаритные электронные реле серии 293 или специализированные ключи из серии 590. Однако для осуществления переключающего контакта потребовалось бы ставить по два таких ключа на каждый разряд, потому в серии 561 предусмотрена специальная микросхема 561КТЗ, которая содержит четыре одинаковых ключа, работающие именно так, как показано на данной схеме: если подать на вход управления сигнал логической единицы, то выход ключа коммутируется на вход,
Рис. 10.3. Реализация ЦАП:
а— двухразрядный ЦАП с отрицательным выходом; б— цепочка R-2R произвольной длины; в— ЦАП с положительным выходом
Читать дальше
Конец ознакомительного отрывка
Купить книгу