При подключении нагрузки происходит сразу много всего. Во-первых, снижается напряжение на вторичной обмотке, поскольку трансформатор имеет конечную мощность. Во-вторых, увеличивается падение напряжения на диодах, которое может при максимально допустимом для них токе достигнуть
В на каждом. В-третьих, и в главных, во время «провалов» пульсирующего напряжения нагрузка питается только за счет того, что через нее разряжается конденсатор. Естественно, напряжение на нем при этом каждый раз немного снижается. Поэтому график выходного напряжения при подключенной нагрузке представляет собой уже не ровную постоянную линию, а выглядит примерно так, как показано на рис. 4.3 (причем снижение входного напряжения за счет «просаживания» трансформатора здесь не учитывается).
Рис. 4.3. Вид пульсаций на выходе нестабилизированного источника:
1— исходное пульсирующее напряжение в отсутствие фильтрующего конденсатора; 2— выходное напряжение при наличии фильтрующего конденсатора и нагрузки
Таким образом, выходное напряжение немного пульсирует— тем больше, чем больше ток в нагрузке, и тем меньше, чем больше емкость конденсатора. Именно поэтому в источниках применяют электролитические конденсаторы столь большой емкости. Наличие пульсаций также снижает постоянную составляющую выходного напряжения.
Заметки на полях
В данной схеме избавиться от этих пульсаций полностью невозможно, как бы вы ни увеличивали емкость. Кстати, а как подсчитать нужную емкость? В принципе, это возможно, если задаться необходимым уровнем пульсаций, но мы здесь приведем только эмпирическое и весьма приблизительное правило: на каждый ампер нагрузки достаточно конденсатора от 1000 до 2200 мкФ. Первая величина ближе к тому случаю, когда на выходе такого источника планируется поставить стабилизатор напряжения, вторая — если такого стабилизатора не предполагается. Может показаться, что увеличением емкости конденсатора при заданной нагрузке можно в конце концов избавиться от пульсаций вообще, однако вы легко установите на практике, что увеличение емкости сверх некоторого значения далее пульсаций уже не снижает, помочь может только стабилизатор.
Указанные причины совместно приводят к тому, что под нагрузкой маломощные источники (типа тех, что со встроенной вилкой) могут выдавать в полтора-два раза меньшее напряжение, чем на холостом ходу. Поэтому не удивляйтесь, если вы приобрели такой блочок с указанным на шильдике номинальным напряжением 10 В, а мультиметр на холостом ходу показывает аж все 18!
Чтобы завершить описание простейшего источника, нужно сказать пару слов об указанном на схеме (см. рис. 4.2) предохранителе Пр. В упомянутых блоках со встроенной вилкой предохранитель часто отсутствует, и это вызвано, кроме стремления к удешевлению устройства, очевидно, тем обстоятельством, что маломощный трансформатор сам служит неплохим предохранителем — провод первичной обмотки у него настолько тонок, и сопротивление его настолько велико, что при превышении допустимого тока обмотка довольно быстро сгорает, отключая весь блок. (После чего его, естественно, остается только выбросить.) Но в стационарных устройствах и тем более в источниках большей мощности предохранитель должен быть обязательно. Обычно его выбирают на ток в два-четыре раза больший, чем расчетный максимальный ток первичной обмотки.
Приведем еще одну полезную схему нестабилизированного источника, на этот раз двуполярного, т. е. выдающего два одинаковых напряжения относительно средней точки — «земли» (рис. 4.4).
Рис. 4.4. Нестабилизированный двуполярный источник питания
В принципе, она пояснений не требует, потому что очень похожа на однополярную, только возврат тока в обмотки от обеих нагрузок происходит непосредственно через общую «землю», минуя диодный мост. В качестве упражнения предлагаю вам самостоятельно разобраться, как работает эта схема. Вторичные обмотки (II и III) здесь, в сущности, представляют собой две одинаковые половины одной обмотки. Жирными точками около вторичных обмоток обозначены их начала, чтобы не перепутать порядок их соединения, если их наматывали раздельно.
Стабилизаторы
Простейший стабилизатор — это стабилитрон, который мы упоминали в главе 3 . Если параллельно ему подключить нагрузку (рис. 4.5, а ), то напряжение на ней будет стабилизировано до тех пор, пока ток через нее не будет слишком велик. Рассчитать работу этой схемы можно так: в отсутствие стабилитрона напряжение в средней точке делителя из R ст(оно равно 200 Ом, как вы, наверное, догадались, т. к. при обозначении на схемах омы в большинстве случаев опускают, см. главу 5 ) и R ндолжно превышать номинальное напряжение стабилизации стабилитрона U ст, иначе при его подключении ток через него не пойдет и стабилитрон не откроется. Так что максимальный ток, который мы можем получить в такой схеме, не превышает нескольких десятков миллиампер— в зависимости от мощности стабилитрона. Такой стабилизатор называют еще параметрическим.
Читать дальше
Конец ознакомительного отрывка
Купить книгу