На рис. 26-1 показано типичное фотосопротивление.
Рис. 26-1. Фотосопротивление.
Светочувствительный материал нанесен на изолирующую подложку из стекла или керамики в виде S-образной фигуры для увеличения длины фотосопротивления. Фотосопротивление более чувствительно к свету, чем другие устройства. Его сопротивление может изменяться от нескольких сотен мегом до нескольких сотен ом. Оно применяется при низких интенсивностях света. Фотосопротивление может выдерживать высокие рабочие напряжения 200–300 вольт при малом потреблении мощности — до 300 милливатт. Недостатком фотосопротивлений является медленный отклик на изменения света.
На рис. 26-2 показаны схематические обозначения фотосопротивления. Стрелки показывают, что это — светочувствительное устройство. Иногда для обозначения светочувствительного устройства используется греческая буква лямбда ( λ ).
Рис. 26-2. Схематические обозначения фотосопротивления.
Фотосопротивления используются для измерения интенсивности света в фотографическом оборудовании, в охранных датчиках, в устройствах автоматического открывания дверей, в различном тестирующем оборудовании для измерения интенсивности света.
Фотогальванический элемент (солнечный элемент)преобразует световую энергию непосредственно в электрическую. Батареи солнечных элементов применяются главным образом для преобразования солнечной энергии в электрическую энергию.
Солнечный элемент — это устройство на основе р-n-перехода, выполненное из полупроводниковых материалов.
В большинстве случаев их делают из кремния. На рис. 26-3 показано устройство солнечного элемента.
Рис. 26-3. Устройство солнечного элемента.
Слои p -типа и n -типа образуют р-n -переход. Металлическая подложка и металлический контакт являются электрическими контактами. Они проектируются с большой площадью поверхности. Свет, попадая на поверхность солнечного элемента, передает большую часть своей энергии атомам полупроводникового материала. Световая энергия выбивает валентные электроны с их орбит, создавая свободные электроны.
Вблизи обедненного слоя электроны притягиваются материалом n -типа, создавая небольшое напряжение вдоль р-n -перехода. При увеличении интенсивности света это напряжение увеличивается. Однако не вся световая энергия, попадающая в солнечный элемент, создает свободные электроны. В действительности, при сравнении получаемой от него электрической мощности с мощностью падающей световой энергии легко увидеть, что солнечный элемент — это довольно неэффективное устройство с максимальным коэффициентом полезного действия порядка 15 %.
Солнечные элементы дают низкое выходное напряжение 0,45 вольта при токе 50 миллиампер. Их необходимо соединять в последовательно- параллельные цепи для того, чтобы получить желаемое выходное напряжение и ток.
Солнечные элементы применяются для измерения интенсивности света в фотографическом оборудовании, для декодирования звуковой дорожки в кинопроекторах и для зарядки батарей на космических спутниках.
Схематические обозначения солнечных элементов показаны на рис. 26-4. Положительный вывод обозначается знаком плюс (+).
Рис. 26-4. Схематические обозначения солнечного элемента.
Фотодиод также использует р-n -переход и его устройство подобно устройству солнечного элемента. Он используется так же, как и фотосопротивление в качестве резистора, сопротивление которого меняется при освещении. Фотодиоды— это полупроводниковые устройства, которые изготовляются главным образом из кремния. Это делается двумя способами. Первый способ — создание простого р-n -перехода (рис. 26-5).
Рис. 26-5. Фотодиод с р-n-переходом.
При другом способе между слоями p -типа и n -типа вставляется слой нелегированного полупроводника, образуя p-i-n фотодиод (рис. 26-6).
Принципы работы фотодиода с р-n-переходом такие же как у солнечного элемента, за исключением того, что он используется для управления током, а не для создания его.
К фотодиоду прикладывается обратное напряжение смещения, формирующее широкий обедненный электронами слой. Когда свет попадает в фотодиод, он попадает в обедненный слой и создает там свободные электроны. Электроны притягиваются к положительному выводу источника смещения. Через фотодиод в обратном направлении течет малый ток. При увеличении светового потока увеличивается число свободных электронов, что приводит к росту тока.
Читать дальше