Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Здесь есть возможность читать онлайн «Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2015, ISBN: 2015, Издательство: Питер, Жанр: sci_popular, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Абсолютный минимум. Как квантовая теория объясняет наш мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Абсолютный минимум. Как квантовая теория объясняет наш мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Абсолютный минимум. Как квантовая теория объясняет наш мир — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Абсолютный минимум. Как квантовая теория объясняет наш мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Интерферометр и интерференционную картину, изображённые на рис. 3.4, можно во всех подробностях описать в рамках классической электромагнитной теории. Детали интерференционной картины можно вычислить из уравнений Максвелла. Этот и многие другие эксперименты, включая передачу радиоволн, можно описать классической теорией. Поэтому классическая теория, которая рассматривает свет как волны, считалась корректной вплоть до начала XX века. Однако в главе 4 рассказывается, как эйнштейновское объяснение одного явления — фотоэлектрического эффекта — потребовало фундаментального переосмысления всего элегантного и, казалось бы, непогрешимого построения классической электромагнитной теории.

4. Фотоэлектрический эффект и объяснение Эйнштейна

В конце XIX века классическая электромагнитная теория была одним из величайших триумфов классической механики. Она могла объяснить результаты самых разнообразных экспериментальных наблюдений. Однако в начале XX века новые эксперименты создали серьёзные затруднения для классического волнового представления о свете, и прежде всего один эксперимент, который вместе со своим объяснением обнаружил фундаментальную проблему в, казалось бы, нерушимой волновой теории света.

Фотоэлектрический эффект

Эксперимент, о котором идёт речь, состоит в наблюдении фотоэлектрического эффекта. Суть его в том, что свет падает на поверхность металла и при определённых условиях из неё вылетают электроны. Здесь для нас электроны — это просто электрически заряженные частицы. Электрон заряжен отрицательно. (Далее мы узнаем, что электроны не являются в строгом смысле частицами по той же самой причине, по которой свет не является волнами.) Поскольку электроны — это заряженные частицы, их легко детектировать. Они могут порождать электрические сигналы в регистрирующей аппаратуре. На рис. 4.1 изображена схема фотоэлектрического эффекта, на которой входящий свет представлен как волна.

Рис 41 Фотоэлектрический эффект Свет падает на металл и из него - фото 12

Рис. 4.1. Фотоэлектрический эффект. Свет падает на металл, и из него испускаются электроны (отрицательно заряженные частицы). В классическом представлении свет является волной, и взаимодействие этой волны с электронами в металле заставляет их вылетать

Можно измерить число электронов, выбитых из металла, и их скорость. Для конкретного металла и заданного цвета освещения, например голубого, оказывается, что электроны вылетают с определённой скоростью, а число вылетающих электронов зависит от интенсивности света. Если увеличить интенсивность, станет вылетать больше электронов, но каждый из них будет иметь всё ту же скорость, независимо от интенсивности освещения. Если цвет света изменить на красный, скорость электронов уменьшится, и чем больше света смещается по спектру в сторону красного цвета, тем меньше будет скорость электронов. При достаточно сильно покрасневшем свете электроны перестают вылетать из металла.

Волновая модель не работает

Проблема для классической теории, связанная с этими наблюдениями, состоит в том, что они совершенно несовместимы с волновым описанием света. Прежде всего, рассмотрим характер зависимости от интенсивности света. При волновом описании чем выше интенсивность света, тем больше амплитуда волны. Всякий, кто имел дело с морскими волнами, знает, что маленькие волны толкают слабо, а большие — сильно. Как показано на рис. 4.2, свет низкой интенсивности — это электромагнитная волна с малой амплитудой. Такая волна должна относительно слабо «толкать» электроны. И эти электроны должны вылетать из металла с относительно низкой скоростью. Напротив, свет высокой интенсивности ассоциируется с большой амплитудой волны. Такая волна должна сильно «толкать» электроны, и они должны вылетать из металла с высокой скоростью.

Рис 42 Волновая картина зависимости фотоэлектрического эффекта от - фото 13

Рис. 4.2. Волновая картина зависимости фотоэлектрического эффекта от интенсивности света. Свет низкой интенсивности имеет малую амплитуду волны. Поэтому волна должна относительно слабо «толкать» электроны, и они будут вылетать из металла с низкой скоростью. Свет высокой интенсивности имеет большую амплитуду волны. Большая волна должна сильно «толкать» электроны, и они будут вылетать из металла с высокой скоростью

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Абсолютный минимум. Как квантовая теория объясняет наш мир»

Представляем Вашему вниманию похожие книги на «Абсолютный минимум. Как квантовая теория объясняет наш мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Абсолютный минимум. Как квантовая теория объясняет наш мир»

Обсуждение, отзывы о книге «Абсолютный минимум. Как квантовая теория объясняет наш мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x