Произведя расчеты, Больцман выяснил, что выражение степени перестанавливаемости равно величине H из его предыдущей статьи с измененным знаком; это было важно, поскольку величина Я равна энтропии со знаком минус. Итак, степень перестанавливаемости могла быть использована как мера энтропии системы. Больцман, должно быть, осознавал важность своего результата, поскольку в заключение подчеркивал:
"Хорошо известно, что когда система тел подвергается чисто обратимой трансформации, общая энтропия остается постоянной. Если, наоборот, среди трансформаций, которым подвергается система, есть хоть одна необратимая, энтропия может только увеличиваться [...]. Что касается предыдущего отношения, то же самое справедливо для [...] меры перестанавливаемости для множества тел. Эта мера перестанавливаемости, следовательно, является величиной, которая, находясь в состоянии термодинамического равновесия, совпадает с энтропией [...], но она также имеет значение в необратимых процессах, где она постоянно увеличивается".
ДЖОЗАЙЯ УИЛЛАРД ГИББС
Американский физик Джозайя Уиллард Гиббс внес значительный вклад как в химию, так и в физику и ввел термин "статистическая физика". Это был скромный гений со склонностью к отшельничеству: ббльшую часть жизни он прожил в доме своей сестры и, унаследовав немалое состояние своего отца, на добровольных началах преподавал в Йельском университете. Гиббс провел небольшой период времени в Европе, не упустив возможность посетить лекции Кирхгофа и Гельмгольца среди прочих. Позже, несмотря на то что он почти не выезжал из своего родного города, он вел переписку с другими физиками, особенно с Максвеллом, который был в восторге от его работы. Эйнштейн даже говорил, что Гиббс — "самый блестящий ум в истории Америки".
Больцман не только идентифицировал степень перестанавливаемости с энтропией, но и указывал на то, что его видение последней может быть распространено на любое вещество, одноатомное или многоатомное, жидкое или твердое. Действительно, физик пришел к выводу:
"Возьмем любую систему, которая подвергается произвольной трансформации, при этом конечные и начальные состояния — необязательно состояния равновесия; в этих условиях мера перестанавливаемости множества тел системы будет постоянно расти в ходе процесса и в лучшем случае будет постоянной в обратимых процессах, которые находятся бесконечно близко к термодинамическому равновесию".
ПРИНЦИП БОЛЬЦМАНА
Эйнштейн ввел термин "принцип Больцмана" для обозначения формулы, которая в итоге была выгравирована на могиле австрийца:
S = k logW.
Несмотря на то что Больцман демонстративно не привел ее в своей статье 1877 года, эту формулу легко вывести простым методом группировки различных констант. В ней S представляет энтропию, к — постоянную Больцмана, которая равна 1,38 · 10 -23Дж/К и которой Больцман никогда не пользовался, a W— число микросостояний (микроскопических конфигураций), совместимых с наблюдаемым макросостоянием (макроскопической конфигурацией). W также иногда толкуется как вероятность макросостояния, поскольку она прямо пропорциональна числу микросостояний. Из этого уравнения видно, как энтропия S увеличивается, по мере того как IV тоже увеличивается. Чем больше микросостояний, тем больше беспорядок; чем больше беспорядок, тем больше энтропия. Кроме того, только для одного возможного микросостояния энтропия математически равна нулю.
СОВРЕМЕННОЕ ПОНЯТИЕ ЭНТРОПИИ
Несмотря на то что терминология, используемая в статье 1877 года, сегодня несколько устарела, в тексте уже встречается понятие энтропии в том виде, в каком она понимается сегодня. В работе Больцмана она определяется как две трети меры перестанавливаемости; в современном понимании этот коэффициент в две трети включен в то, что стали называть "постоянной Больцмана", хотя сам ученый никогда этим термином не пользовался.
Поскольку число перестановок и число микросостояний, совместимых с распределением, прямо пропорциональны, сегодня вместо числа перестановок используется это последнее значение. Итак, в формуле энтропии утверждается, что она пропорциональна логарифму числа микроскопических состояний, совместимых с наблюдаемым макроскопическим состоянием.
Читать дальше