1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + ... ,
который итальянский математик Пьетро Менголи сгруппировал так:
1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) +
+ (1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16) + ...
≥ 1 + 1/2 + 1/2 + 1/2 + 1/2 + ... ,
показав, что его сумма бесконечна. Другие же вызывали недоумение. Рассмотрим пример:
1 - 1 + 1 - 1 + 1 - 1 + ...
В таком виде кажется, что его сумма равна 0:
(1-1) + (1-1) + (1-1) + ... = 0,
а если сгруппировать его так, то сумма равна 1:
1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + ... = 1.
На самом деле оба результата неправильны. Эйлер, как и другие математики того времени, предпочитал исходить из известного ряда
1/(1-x) = 1 + x + x 2+ x 3+ x 4+ x 5+ ...
Подставив вместо х число -1, он пришел к
1/2 = 1/(1- (-1)) = 1 + (-1) + (-1) 2+ (-1) 3+ (-1) 4+ (-1) 5+ ...
= 1 - 1 + 1 - 1 + 1 - 1.
то есть ни 1, ни 0: Эйлер утверждал, что сумма равна 1/2.
К арсеналу уже известных к тому времени рядов
Эйлер постепенно добавил много собственных результатов: решение Базельской задачи; формулу суммирования Эйлера — Маклорена, которая улучшала сходимость, если таковая наблюдалась; преобразование рядов через конечные и последовательные разности; а также важные открытия в области расходящихся рядов. Фактически, в 1755 году, то есть в эпоху, когда еще не существовало понятие предела, ученый уже различал сходящиеся и расходящиеся ряды. Среди рядов, суммированных Эйлером, мы находим
π/(3√3) = 1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...
π/(2√2) = 1 + 1/3 + 1/5 + 1/7 + 1/9 + 1/11 + ...
π/3 = 1 + 1/5 - 1/7 - 1/11 + 1/13 - 1/17 + ...
π 2/(8√2) = 1 - 1/3 2- 1/5 2+ 1/7 2+ 1/92 + ...
π 2/(6√3) = 1 - 1/5 2- 1/7 2+ 1/112 + 1/13 2+ ...
1 -1! + 2! -3! + ... = 0,596347362123...
Он также открыл два новых ряда. Один — данная последовательность степеней:
arxtgz = z - z3/3 + z5/5 + z7/7 + ... ,
а вторым был первый ряд Фурье в истории, который Эйлер описал в 1744 году в письме Гольдбаху, то есть задолго до того, как Жозеф Фурье (1768-1830) начал свои знаменитые исследования. И даже до того, как Фурье родился.
1/2x = sinx - 1/2 sin 2х + 1/3 sin Зx - ...
Вклад Эйлера в теорию чисел огромен, и его подробное изложение не является целью этой книги. Достаточно сказать, что только Карл Густав Якоб Якоби (1804-1851) и Сриниваса Рамануджан Айенгор (1887-1920) могут сравниться с ним по значению своих работ в этой области. Еще одним важным разделом математики, интересовавшим Эйлера, были дифференциальные уравнения. Здесь его самым знаменитым открытием, возможно, является метод Эйлера, позволяющий приближенно решать дифференциальные уравнения первого порядка.
ГЛАВА 4
Эйлер и теория чисел
Эйлер, имевший серьезные проблемы со зрением, в России мог бы удалиться от дел и спокойно почивать на лаврах. Но он работал до самой смерти: глубоко исследовал теорию чисел, добился превосходных результатов в области простых чисел, чисел Мерсенна и чисел Бернулли, а также диофантовых уравнений и разбиения множеств. Он также успел уделить время игровой математике и даже написал несколько научно-популярных книг.
Причиной возвращения Эйлера в Россию в 1766 году стало желание императрицы Екатерины II вернуть Академии былую славу. Ученый никогда не терял связи с Россией, даже живя в Берлине. Хорошо известно, что он посылал в Санкт- Петербург множество статей, которые были логическим продолжением работ, впервые опубликованных именно в России. Ученый также постоянно получал вознаграждение от Российской империи за решение определенных задач, например военного характера, и оказывал протекцию молодым русским, приезжавшим учиться в Европу. За научный вклад в работу Петербургской академии Эйлеру в 1742 году, когда он еще был в Берлине, была назначена пенсия. Один любопытный исторический факт дает представление не только о подробностях второго путешествия Эйлера в Россию, но и о том, насколько не сложились его отношения с предыдущим покровителем. В одном из своих писем Фридрих сожалел об утере целого ряда личных записок ученого во время кораблекрушения, произошедшего по пути в Санкт-Петербург: "Какая жалость, ведь из этих записок могло бы получиться шесть томов трактатов, полных цифр от начала и до конца, а теперь, видимо, Европа лишилась такого приятного чтения".
По приезду ученого ему было назначено весьма щедрое жалованье в 3000 рублей. Императрица даже отдала ему повара из своего дворца. Руководила Академией, по назначению Екатерины, княгиня Дашкова. Существует знаменитый и документально подтвержденный анекдот, который показывает, как высоко княгиня ценила Эйлера. Однажды она провожала ученого в зал собраний. Один напыщенный профессор захотел сесть на почетное место рядом с председательницей, она же насколько можно любезно обратилась к Эйлеру: "Располагайтесь, где хотите, господин Эйлер, хотя все мы знаем, что вы выберете самое почетное место, первое из всех".
Читать дальше