Отсортированные природные кристаллы поставлялись потребителям — оптическим предприятиям и научно-исследовательским институтам. Из кристаллов изготовлялись оптические детали, которые требовались и которые позволяло изготовлять данное сырье. Однако природный флюоритовый материал накладывал множество неприятных для потребителя ограничений. Крупные кристаллы были исключительной редкостью, поэтому в основном из флюорита изготовлялась мелкогабаритная оптика или делались склеенные детали. Приходилось мириться с наличием дефектов, иногда даже крупных, с неоднородностью материала. Флюорит относительно хрупок, поэтому даже хорошие кристаллы раскалывались по спайности при неосторожной обработке или неправильном хранении. Так что не было в оптической промышленности другого природного сырья, более капризного, чем флюорит. Кроме того, это сырье было очень редким и дорогим, и в 20—30-х годах даже богатые американские фирмы использовали флюорит только для изготовления самых дорогих объективов-апохроматов, где без него обойтись практически невозможно. Особенно сложной была ситуация с крупными (больше 2—3 см) флюоритовыми изделиями. Даже такие известные фирмы, как «Хильгер» в Лондоне, были вынуждены изготавливать оптические приборы с деталями из флюорита, склеенными из отдельных кусочков и содержащими включения.
Поиски путей замены природного флюорита. Искусственные кристаллы
Флюоритовый «голод», с которым столкнулась оптическая промышленность уже в 30-х годах, заставил искать заменители оптического флюорита. Однако подходящих материалов найти не удавалось: они либо существенно уступали флюориту по оптическим показателям, а те, у которых оптические свойства были более или менее подходящими, имели другие дефекты (были нестойкими к воздействию растворителей, даже паров воды, обладали низкой прочностью и т. д.). Словом, в оптическую технику их вводить было нельзя. Оставалась единственная возможность — заменить природный оптический флюорит искусственным.
Нужно заметить, что проблема получения искусственных кристаллов была к тому времени уже не нова. Еще в середине XVIII в. были уже синтезированы многие минералы, а к концу XIX в. их число достигло нескольких сотен [Чирвинский, 1903—1906]. Был в списке синтезированных минералов и флюорит. Первый синтез флюорита относится, очевидно, к середине XIX в. Сенармонт в 1855 г. получил хорошо ограненные флюоритовые кристаллы с кубическими и октаэдрическими гранями путем перекристаллизации в запаянной стеклянной трубке геля CaF 2[Doelter, 1931]. Подобные же удачные эксперименты, но в среде с HCl, были проведены Беккуорелом. Затем он перешел к диффузионному методу и в условиях встречной диффузии NH 4F и CaCl 2получил сравнительно крупные кубические и октаэдрические кристаллы. Шеерель и Дрехсель в 1824 г. осуществили первый синтез флюорита из расплава-раствора CaCl 2, KCl и NaF. Кристаллики флюорита получали воздействием газообразной HF на известково-натровое стекло, обработкой разбавленной плавиковой кислотой кальцит-кварцевого песка (такие опыты проводил, например, в 1921 г. Ветцель), плавлением сиенита в атмосфере HF [Leeder, 1979]. В приложении к флюориту были испробованы все возможные методы и все они дали положительные результаты, если считать за таковые получение кристаллов флюорита, но кристаллы эти были настолько мелкими, что ни один из методов их получения нельзя было принять за основу в разработке промышленных технологий. Нужны были специальные исследования, и они проводились во всех странах.
Флюорит, как известно, образуется различными способами — из холодных и горячих растворов, расплавов, газовой фазы и т. д. На основе теоретических представлений любой механизм флюоритообразования, если он работает в строго определенных условиях, может привести к формированию крупных совершенных кристаллов. Но на практике теоретические прогнозы оправдываются не сразу и далеко не всегда, главным образом потому, что трудно сразу определить эти оптимальные условия. Наиболее перспективными считались диффузные, гидротермальные и расплавные методы, и в этих трех направлениях были сосредоточены технологические поиски.
Метод встречной диффузии
Флюорит может выпадать в кристаллический осадок в обычных условиях (при атмосферном давлении и комнатной температуре) в результате многих реакций, например
CaSO 4+ 2KF = ↓CaF 2+ K 2SO 4;
2NH 4F + CaCl 2= ↓CaF 2+ 2NH 4Cl.
Рис. 14. Кристаллизаторы для выращивания кристаллов флюорита методом встречной диффузии реагентов
Читать дальше