АЛГЕБРА КВАНТОВЫХ ЧИСЕЛ
Дирак разработал формализм квантовой механики независимо от своих коллег в университете Геттингена и ввел понятие «q-чисел» для квантовых переменных. Он также четко разграничил q-числа, в которых буква «q» отсылает к quantum (квантовый) или к queer (странный, причудливый), и с-числа, в которых буква «с» означает classics (классический) или commuting (коммутативный). Так он четко отделил квантовый мир от классического. Хотя Дирак был убежден в превосходстве своей версии квантовой теории над матричной механикой Гейзенберга, Борна и Йордана, он быстро осознал, что на самом деле оба подхода равносильны:
«Мне понадобилось время, чтобы убедиться: мои q-числа на самом деле не являются более общими, чем матрицы, и обладают теми же недостатками, что и математически доказанные недостатки матриц».
Летом 1926 года Дирак разработал новую версию своей квантовой теории, известной под названием «алгебры q-чисел». Представленная в виде чисто математической теории, без каких-либо отсылок к проблемам именно физики, данная работа не произвела особого впечатления на сообщество ученых-физиков. Только некоторые из них, интересовавшиеся исключительно математическими аспектами квантовой механики, такие как Йордан, проявили любопытство. Последний оценил теорию Дирака следующим образом: «Я нахожу публикацию Дирака крайне интересной. По моему мнению, математика столь же интересна, как и физика». Дирак ввел общее определение различения квантовых переменных (q-чисел) и из этой дифференциации вывел коммутативное соотношение между операторами положения (q), момента (р) и орбитального момента (L) — эти отношения уже были найдены в матричной механике Борна, Йордана и Гейзенберга. Данные результаты сегодня являются отправной точкой любой работы в области квантовой механики.
Таким образом, алгебра q-чисел появилась как альтернатива матричной механике. С момента публикации первой статьи Гейзенберга Дирак почти все свое время посвящал разработке собственной системы, стремясь показать, что его подход способен объяснить основные результаты, полученные в субатомном мире. Однако он занимался столь упорно, что не успевал обращать внимание на новые формулировки квантовой механики. Работы Дирака этого периода были приняты научным сообществом физиков с большим уважением, но произвели меньшее впечатление, нежели работы Гейзенберга, Борна и Йордана. Вникнуть в суть работы Дирака было нелегко, многим коллегам его стиль казался непонятным. Например, физик Джон Слейтер не скрывал своей неудовлетворенности:
«Существует два типа теоретических физиков. Первый объединяет таких людей, как я, — прозаичных и прагматичных, всегда пытающихся говорить и писать как можно яснее. Второй состоит из «волшебников», жестикулирующих так, словно сейчас достанут из шляпы кролика (как Дирак), и находящих удовлетворение только тогда, когда их тексты и объяснения выглядят глубоко таинственными ».
Начиная с весны 1926 года внимание всех, кто интересовался квантовой теорией, было приковано к университету Цюриха. Именно там практически никому не известный физик Эрвин Шрёдингер (1887-1961), до этого времени не принимавший никакого участия в разработке квантовой теории, предложил свой формализм квантовой механики. Большинству физиков того времени его описание показалось гораздо более понятным, нежели сложные матричные и алгебраические языки, использовавшиеся до тех пор.
ВОЛНОВАЯ МЕХАНИКА ШРЁДИНГЕРА
Дирак, по всей видимости, впервые услышал о новой теории Шрёдингера тогда же, когда была опубликована его первая статья, — во время приезда Зоммерфельда в Кембридж в марте 1926 года. Но тогда он был слишком погружен в разработку собственного формализма квантовой теории, чтобы уделять достаточно внимания новым предлагаемым подходам. Кстати, Дирак не был впечатлен волновым уравнением Шрёдингера, которое поначалу счел обратной стороной теории Луи де Бройля, уже оставшейся в прошлом. Вот как Дирак писал об этом:
УРАВНЕНИЕ ШРЁДИНГЕРА
В теории Шрёдингера состояние квантовой системы определяется через сложную математическую функцию, называемую волновой функцией Ψ, которая зависит от времени и всех координат, определяющих наблюдаемую систему. Уравнение Шрёдингера представляет собой дифференциальное уравнение первого порядка. Оно включает зависимость от времени, которая выглядит следующим образом:
Читать дальше