Аксиоматическая система является независимой, если ни одна аксиома не может быть выведена из другой, то есть если система максимально экономична, не избыточна. И пусть не все сформулированные им аксиомы оказались независимыми (как выяснилось позже), Гильберт доказал независимость между различными группами аксиом. Он утверждал, что аксиома параллельных прямых независима от прочих аксиом, то есть она не может быть выведена на их основе, чем закрыл вопрос, остававшийся открытым несколько столетий. Это стало возможным с применением метода, ставшего вскоре классическим: построить модели геометрий, которые выполняют все желаемые аксиомы, кроме той, независимость которой проверяется, и тогда последняя не может быть следствием из других (поскольку если бы это было так, мы получили бы противоречие — аксиому и ее отрицание). Для доказательства независимости аксиомы параллельных прямых Гильберт создал модель неевклидовой геометрии. А для доказательства независимости аксиомы Архимеда он построил модель неархимедовой геометрии, в которой существуют бесконечно малые величины. Так Гильберт, по примеру Джузеппе Веронезе (1845-1917), распахнул двери для исследования геометрии нового типа.
Давид Гильберт, 1886 год.
Скульптурная группа, воздвигнутая в память о Гауссе и Вебере в Гёттингене. Гильберт опубликовал свои«Основания геометрии» (1899) по случаю ее торжественного открытия.
Кёнигсбергский университет, около 1890 года. Гильберт поступил сюда десятью годами ранее.
Вторым требованием, которое Гильберт предъявлял к своей аксиоматической системе, была непротиворечивость. Система аксиом является непротиворечивой, если не порождает разногласий, если нельзя вывести никакого противоречия на ее основе. Такую систему аксиом называют когерентной, или совместимой. Модели Бельтрами, Клейна, Пуанкаре и Римана доказали относительную непротиворечивость неевклидовых геометрий в отношении к евклидовой, поскольку эти неевклидовы модели содержались внутри собственно евклидова пространства. Но была ли непротиворечивой евклидова геометрия? Гильберт доказал непротиворечивость евклидовой геометрии относительно арифметики, впервые предложив чисто числовую модель. Он вывел числовое множество, в котором выполняются все геометрические аксиомы, в котором точки — это некоторые пары алгебраических чисел, а прямые — некоторые тройки этих чисел, в котором принадлежность какой-то точки прямой означает, что соблюдается некое числовое уравнение, и так далее. Таким образом, любая противоречивость его аксиоматической системы геометрии привела бы к противоречивости арифметики. Любое противоречие в выводах, cделанных на основе геометрических аксиом, было бы признано арифметическим (например, 0=1).
ВЛИЯНИЕ ГЕРЦА
Не исключено, что Гильберт не был близко знаком с аксиоматическими работами итальянской школы Пеано, зато он знал о достижениях немецкой школы — как в области геометрии (Паш), так и в области механики. Генрих Рудольф Герц (1857-1894) скончался в возрасте 37 лет, но за свою короткую жизнь он успел удивить современников как физик-экспериментатор (он открыл электромагнитные волны и фотоэлектрический эффект) и физик-теоретик. В 1894 году он опубликовал работу «Принципы механики, изложенные в новой связи», в которой аксиоматически изложил знания в этой области. К собственной аксиоматической системе у него имелось два требования: допустимость и корректность. Допустимость совпадает с непротиворечивостью, с отсутствием противоречий. А корректность — с полнотой, с возможностью доказать в рамках этой теории все, что является истинным в мире. Эти два понятия перекликаются с введенными Давидом Гильбертом.
Генрих Рудольф Герц, около 1893 года.
Следовательно, Гильберт свел непротиворечивость евклидовой геометрии к непротиворечивости арифметики, что на тот момент было чем-то само собой разумеющимся, хотя вскоре он признал: проблема остается открытой и имеет высокий приоритет (и вскоре мы в этом убедимся). Неевклидовы геометрии основывались на евклидовой, которая, в свою очередь, держалась на арифметике действительных чисел. Как во сне индийского мудреца, мир покоится на спинах слонов, а те стоят на спине черепахи. Ну а черепаха? Вопрос о непротиворечивости арифметики сразу же обрел остроту. В своей книге Гильберт этот вопрос не затронул, тем не менее он считал, что совместимость арифметических аксиом может быть доказана довольно просто (как же он ошибался!).
Читать дальше