По незначительному изменению времени прихода импульсов пульсара удалось определить, что он является частью двойной системы с орбитальным периодом 2 часа 10 минут. Однако компаньон пульсара отличался очень маленькой массой, сопоставимой с массой Юпитера. Так что было не совсем понятно, что это был за объект — звезда или планета.
Из-за короткого орбитального периода компаньоны в системе находились совсем близко друг к другу — на расстоянии 600 000 км, то есть чуть меньшем, чем радиус Солнца. Поскольку следов рентгеновского излучения обнаружено не было, речи о перетекании внешних слоев компаньона на пульсар в тот момент идти не могло. Это означало, что размер компаньона должен был быть таким, чтобы он мог уместиться в своей полости Роша. Поэтому, учитывая расстояние до пульсара, он не мог быть более 5 радиусов Земли. Таким образом, соседом пульсара была суперземля с массой Юпитера. Газовый гигант с толстой водородной атмосферой не втиснулся бы в такой маленький радиус, значит, оставался лишь один вариант — очень маленький белый карлик.
Являясь более легкой разновидностью нейтронной звезды, белые карлики обычно имеют массу около двух третей массы Солнца и тело размером с Землю. Чтобы весить столько же, сколько Юпитер, необычный компаньон PSR J1719–1438 должен был отдать пульсару приблизительно 99,8% своей массы. Учитывая своеобразный способ организации вещества внутри белого карлика, мертвая звезда должна была бы расширяться, а ее радиус — увеличиваться. Однако, несмотря на колоссальную потерю массы, звезда избежала полного разрушения.
В процессе передачи белым карликом массы пульсару гравитация каждого из них изменяется. То же происходит и с формой и протяженностью полостей Роша вокруг них. На определенном расстоянии этого изменения может оказаться достаточно для того, чтобы белый карлик вернулся в свою собственную полость Роша, а перетекание на пульсар прекратилось. Это задача не из простых. Если участники двойной системы будут находиться слишком далеко друг от друга, перетекание массы белого карлика на пульсар станет невозможным. На чрезмерно близком расстоянии перетекание не прекратится до полного уничтожения белого карлика.
Плотность этого маленького карлика, состоящего главным образом из невероятно твердого углерода, превышает 23 г/см 3, что намного больше плотности Земли, равной 5,5 г/см 3. При таких значениях плотности углеродный мир должен кристаллизоваться в алмазный.
Должно быть, это один из самых странных объектов во Вселенной: алмазная планета, обращающаяся вокруг компаньона размером с город, которая когда-то была звездой.
Глава 9. Системы с двумя солнцами
Попытки доказать с помощью телескопа, что наша Солнечная система не уникальна во Вселенной, предпринимались еще за 10 лет до открытия первой экзопланеты. Правда, мало кто воспринимал их всерьез. Скептическое отношение было вызвано не сомнениями ученых в существовании планет вокруг других звезд, а неверием в возможность их обнаружения при тогдашнем уровне развития технологий.
До того момента охота на планеты сводилась к астрометрии — поиску мельчайших изменений в местоположении звезд на небе, которые бы указывали на наличие рядом планеты. Проблема заключалась в том, что даже под влиянием Юпитера, обращающегося вокруг Солнца, при наблюдении с расстояния 16 световых лет угловое отклонение нашей звезды составляет всего лишь 0,0000003 градуса. А это в 1000 раз меньше разрешения фотографических изображений неба, которые в то время можно было получить с Земли.
Пожалуй, самой убедительной попыткой открытия экзопланет стало известие об обнаружении двух объектов с массой Юпитера, обращающихся вокруг звезды Барнарда — красного карлика, находящегося на расстоянии 6 световых лет от нас в созвездии Змееносец. При сравнении местоположения звезды на фотопластинках в 1960-е гг. было выявлено смещение в 1 микрометр. Однако впоследствии выяснилось, что время, когда оно фиксировалось, совпадало со временем чистки линз телескопа, а значит, перемещение звезды тут было ни при чем. Эта ошибка еще раз продемонстрировала всю тщетность подобных изысканий.
Анализ изменений лучевой скорости звезды казался столь же бесперспективным занятием. Допуская, что для достижения максимального эффекта наблюдение ведется «с ребра», кеплеровская скорость Солнца, возникающая под действием притяжения Юпитера с его 12-летним периодом обращения, составляет около 13 м/с. В 1970-е гг. лучевую скорость звезды можно было измерить только с точностью 1 км/с — при таком уровне точности невозможно выявить даже признаки планет размером с Юпитер. Да и горячий юпитер (объект, о котором тогда никто даже и не мог помыслить) остался бы незамеченным.
Читать дальше
Конец ознакомительного отрывка
Купить книгу