В еще одном из возможных сценариев пульсар расплавляет и разрезает своего компаньона как паяльной горелкой. Названные черными вдовами в честь паучих, пожирающих самцов-партнеров, эти мертвые звезды-каннибалы обращаются на таком маленьком расстоянии от своего соседа, что под действием их излучения вторая звезда испаряется, а из ее остатков образуется диск. Как раз сейчас один такой звездоубийца, пульсар PSR J1311–3430, делает свое черное дело [18] Буква J в названиях пульсаров указывает на более актуальные и точные координаты их расположения на небе.
.
В 2012 г. была открыта тусклая звезда, цвет которой менялся в диапазоне от ярко-синего до тускло-красного. В том месте, где она находилась, также наблюдался источник высокоэнергетического гамма-излучения, сопровождавшегося прерывистым радиоволновым излучением.
Высокая интенсивность излучения наводила на мысль, что ключом к разгадке тайны является пульсар. Главная трудность заключалась в том, чтобы выделить в гамма-излучении характерную маякоподобную пульсацию. Из-за высокой энергии такого излучения пульсары испускают намного меньше гамма-лучей, чем радиоволн, поэтому зафиксировать быструю вспышку не так-то просто. Однако исследователям NASA, скрупулезно проанализировавшим данные, полученные с помощью космического гамма-телескопа «Ферми» за четыре года, это все-таки удалось: меняющая цвет звезда действительно вращается вокруг пульсара — первого, выявленного исключительно по вспышкам гамма-излучения.
PSR J1311–3430 — 2,5-миллисекундный пульсар, совершающий 390 оборотов в секунду. Расстояние между пульсаром и его компаньоном невероятно мало — всего на 40% больше расстояния между Землей и Луной. Вследствие этого период обращения составляет 93 минуты — меньше, чем в среднем тратит на дорогу от дома до работы и обратно средний британец. Как раз этой близостью к мерцающему маяку пульсара и объясняется изменение цвета звезды-компаньона.
Та сторона звезды-компаньона, которой она повернута к своему мертвому соседу, находится под постоянным натиском излучения пульсара. В результате этой бомбардировки температура на ней достигает 12 000 °C — вдвое больше, чем на поверхности Солнца, а сама она имеет ярко-синий цвет. Цвет дальней стороны звезды — более прохладный красный, соответствующий куда меньшей температуре 2700 °C. При вращении вокруг компактного пульсара звезда поворачивается к Земле то красной, то синей стороной.
Тусклость звезды также объясняется влиянием пульсара. Она имеет крошечный размер, а ее масса составляет каких-то 12 масс Юпитера. Раз скорость вращения пульсара измеряется в миллисекундах, в прошлом звезда-компаньон должна был отдать ему свои внешние слои, тем самым раскрутив его. Вероятно, после этого у нее осталось гелиевое ядро, которое, скорее всего, было слишком легким, чтобы обеспечить сжатие до белого карлика. В последующем, непрерывно подвергаясь воздействию излучения пульсара, звезда съежилась до космического объекта размером почти с планету. Остатки распадающегося тела звезды следуют за ней, образуя своего рода барьер вокруг пульсара. Поэтому испускаемые пульсаром радиоволны рассеиваются или поглощаются этими фрагментами искромсанной звезды, тогда как высокоэнергетическое гамма-излучение прорывается через них и добирается до Земли. Когда от звезды ничего не останется, улетучившийся из нее материал может конденсироваться, образовав диск вокруг пульсара. Таким образом, мы получим одинокий миллисекундный пульсар и первичный диск для формирования нового поколения планет.
Если пульсар не находится достаточно близко, чтобы разрезать своего соседа на части, звезда-компаньон в конечном итоге умрет и превратится в белый карлик. Укутанный в собственную полость Роша, белый карлик будет обращаться вокруг пульсара. Однако это безопасное существование не сможет продолжаться вечно. Причина — гравитационные волны.
Сто лет назад Альберт Эйнштейн предсказал существование волновой ряби на ткани пространства. Согласно ему, Вселенную можно представить в виде упругой резиновой пластины, которая продавливается под тяжестью массивных объектов. Гравитация — следствие этого продавливания. Она заставляет более легкие объекты перемещаться к более тяжелым, продавившим пространство на большую глубину. При передвижении объектов пластина деформируется с учетом их нового местоположения, в результате чего возникают колебания, которые расходятся в виде гравитационной волны.
Читать дальше
Конец ознакомительного отрывка
Купить книгу