Другие ученые занимаются исследованием того, как научить компьютер писать коды самостоятельно. Google снабдил свои алгоритмы машинного обучения рабочей памятью, чтобы приблизиться к тому, что имеется в человеческом мозге. Нейронная машина Тьюринга от Google уже освоила создание процедур, которые выполняют простые вычислительные задачи, но пока эти машины научились только самым базовым процедурам, таким как неоднократное копирование и сортировка данных. Но даже на этапе своего младенчества искусственный интеллект уже позволяет компьютерам решать некоторые четко определенные задачи лучше, чем это делает человек. Например, поисковик Google теперь использует машинное самообучение, чтобы улучшить производительность, тогда как в прошлом люди должны были вручную создавать все основанные на правилах алгоритмы для ранжирования веб-страниц {409} 409 Metz C. AI is transforming Google Search. The rest of the web is next // Wired. 2016.
. Компьютерное самокодирование — совсем молодое направление, но оно перевернет мир. Особенно учитывая последние радикальные и подрывные технологии, подобные iPhone, в основе которых находится программное обеспечение.
В других отраслях инженерного искусства становится все более обычным тот факт, что окончательные проекты на самом деле определяются компьютером, а не человеком. Я сам использовал такое программное обеспечение с целью разработки способов подбора материалов для улучшения звука в театрах. Как мы видели в главе 5, хорошо продуманная акустика помогает голосу актера достигнуть самой дальней части зала. Если правильно подобрать материал, форму и конфигурацию стен и других поверхностей, то характер отражения звука будет усиливать речь, а не мешать ей. Я специализируюсь на создании бугорчатых поверхностей, которые называются диффузорами и рассеивают звук. Когда диффузор размещается на большой плоской стене, это похоже на матирование зеркала. В матовом зеркале изображение смазано, подобным же образом акустический образ становится менее четким, когда звук отражается от диффузора. Это может помочь устранить акустические аберрации, такие как эхо, от задних стен театрального зала {410} 410 Cox T. J., D’Antonio P. Acoustic Absorbers and Diffusers: Theory, Design and Application. CRC Press, 2016.
.
Когда я начинал работу над диффузорами, в лучших моделях использовались умные математические принципы. Моим нововведением стало использование компьютера для поиска топографий поверхностей, которые производят нужные акустические отражения и обладают внешними характеристиками, совместимыми с современной архитектурой. И делается это методом проб и ошибок, реализуемым на компьютере. Мы уже видели, как копирование правил эволюции позволяет сгенерировать новую музыку. Тот же процесс можно применить и в инженерной акустике.
Была ли деятельность моего компьютера творческой? Существует тест на искусственный интеллект, названный в честь математика XIX века Ады Лавлейс. Она считается первым программистом, потому что детально описала аналитическую машину Чарлза Бэббиджа — первый в мире проект компьютера. Следуя заданной программе, машина могла рассчитывать математические функции. Но сама Лавлейс признавала: «В ней не было даже малейших притязаний на то, чтобы что-то создавать. Она может делать все, что ей прикажут. Она может последовательно осуществлять анализ, но не обладает способностью предугадывать какие-либо аналитические связи или устанавливать истину» {411} 411 Riedl M. O . The Lovelace 2.0 Test of Artificial Creativity and Intelligence // arXiv preprint arXiv:1410.6142. 2014.
. Тест Лавлейс проверяет возможности искусственного интеллекта создавать то, что не поддается описанию программиста. Чтобы добиться этого, моему компьютеру пришлось бы выдвинуть гипотезу о том, что подражание законам эволюции может привести к более удачным акустическим моделям, а затем разработать научные эксперименты, необходимые для доказательства истинности этой гипотезы. Мой компьютер не прошел бы тест Лавлейс.
В верхнем ряду показаны диффузоры 1970-х годов. Ниже — спроектированный мной волнистый потолок Синерамы, изгибы которого соответствуют современным тенденциям дизайна интерьера
Чтобы развиваться, науке, технике и математике нужны инновационные идеи и артефакты. Художник основывается на канонах предшествующих произведений искусства. Так и ученый «стоит на плечах гигантов», основываясь на современных знаниях и понимании. В конце концов, и художники, и ученые должны производить новое, удивительное и ценное. Научный поиск — одна из вершин человеческих достижений, но даже эта область не застрахована от вмешательства креативных компьютеров. Этот новый подход к науке лучше всего применяется в биологии. В Манчестерском университете профессор Росс Кинг и его коллеги создали ученого-робота по имени Ева, который, как они надеются, поможет открыть новые лекарственные препараты. Кинг устроил мне экскурсию по своим белоснежным лабораториям, включая маленькую комнатку, где работает Ева. Она выглядит как небольшой промышленный робот с двумя руками, которыми она берет образцы и умело ими манипулирует. Робота окружают стеллажи с химикатами, инкубаторы и камеры. Все это помогает Еве организовывать эксперименты, выращивать клеточные культуры, фотографировать результаты и использовать анализ изображений, чтобы выяснить, насколько хорошо растут клетки.
Читать дальше
Конец ознакомительного отрывка
Купить книгу