Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]

Здесь есть возможность читать онлайн «Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
  • Автор:
  • Издательство:
    Альпина нон-фикшн
  • Жанр:
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4944-0
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью. Такое многообразие мнений поможет читателю составить целостное и всестороннее представление о проблеме.

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Смогут ли машины стать такими же умными, как трехлетние дети?

Элисон Гопник
психолог, калифорнийский университет в Беркли; автор книги «ребенок-философ» (the philosophical baby)

Машина способна обыграть Каспарова, но может ли она сравниться умом с трехлетним малышом?

Обучение стало основой нового подъема ИИ. Но лучшие ученики во вселенной — это, определенно, человеческие дети. В ходе последних 10 лет изучающие развитие когнитивисты, часто работающие совместно со специалистами по теории вычислительных систем, пытаются выяснить, каким образом детям удается так много всего выучить за столь короткое время.

Удивительно, как сложно предсказать при создании искусственного интеллекта, что будет сделать легко, а что — сложно. Сперва мы думали, что вещи, которыми занимаются умнейшие из людей, вроде игры в шахматы или доказательства теорем — весь этот экстремальный спорт для «высоколобых» — окажутся самыми сложными для компьютеров. В действительности они оказались легкими. А вот то, что может сделать любой дурак, к примеру опознать предмет или поднять его, гораздо труднее. Оказывается, намного проще смоделировать рассуждения хорошо подготовленного взрослого специалиста, чем процесс обучения самого обычного ребенка. Так где же машины, догоняющие по способностям трехлетних детей, и какие типы обучения для них все еще недосягаемы?

За последние 15 лет мы выяснили, что даже младенцы удивительно хорошо справляются с обнаружением статистических паттернов. И специалисты по вычислительным системам изобрели машины, которые тоже исключительно хорошо справляются со статистическим обучением. Технологии вроде глубинного обучения обнаруживают даже очень сложные закономерности в огромных массивах данных. В результате компьютеры вдруг научились делать такое, что раньше для них было невозможно, например давать правильные заголовки для картинок из интернета.

Проблема с таким типом чисто статистического машинного обучения заключается в том, что оно зависит от огромного объема данных, причем они должны быть предварительно обработаны человеческим мозгом. Компьютеры могут распознать картинку из интернета только потому, что миллионы реальных людей редуцировали невероятно сложный набор данных со своей сетчатки до крайне стилизованного, ограниченного и упрощенного снимка со своим котейкой в Instagram, а также дали изображению совершенно определенный заголовок. Антиутопия из одного простого факта: на самом деле все мы — компьютеры Google, пребывающие под наркозом иллюзии, что нам просто нравятся картинки с котиками. Однако даже с такой помощью машинам все еще требуются огромные массивы данных и предельно сложные вычисления, чтобы посмотреть на новое изображение и сказать: «Киса!», а детям для этого нужно дать всего лишь пару примеров.

Кроме того, уровень обобщения для такого статистического обучения ограничен, будь вы ребенком, компьютером или ученым. Более мощный способ познания — формулировать гипотезы о том, как устроен мир, и проверять, насколько они согласуются с фактами. Тихо Браге, Google Scholar [76] Сервис, осуществляющий поиск по научным работам, чьи полные тексты представлены в Сети. — Прим. ред. своего времени, объединил огромный объем данных астрономических наблюдений и смог использовать их для того, чтобы предсказывать положение звезд в будущем. Но Иоганн Кеплер благодаря своей теории смог делать неожиданные, масштабные, совершенно инновационные прогнозы, находившиеся далеко за пределами кругозора Браге. Дошкольники делают то же самое.

Еще одно большое преимущество машинного обучения — это формализация и автоматизация такого типа проверки гипотез. Байесовская теория вероятности стала важной частью процесса познания. Мы можем математически описать некую случайную гипотезу, например о том, как изменения температуры океана влияют на ураганы, а потом вычислить, насколько вероятно, что такая гипотеза верна, на основании данных наблюдений. Машины теперь хорошо умеют проверять и оценивать верность гипотез на основании фактических данных, что оказывает влияние на все на свете — от медицинской диагностики до метеорологии. Когда мы изучаем маленьких детей, то видим, что они рассуждают подобным образом, и это отчасти объясняет, как им удается настолько быстро учиться.

Таким образом, компьютеры прекрасно умеют делать выводы из структурированных гипотез, особенно вероятностные выводы. Но действительно сложная проблема состоит в том, чтобы решить, какие гипотезы из всего их множества достойны того, чтобы их проверять. Даже дошкольники удивительно хорошо справляются с построением творческих, нестандартных гипотез. Они как-то сочетают рациональность и иррациональность, системность и случайность, и мы понятия не имеем, как они это делают. Мысли и действия маленьких детей часто выглядят бессмысленными, даже бредовыми — просто попробуйте как-нибудь поиграть в дочки-матери с трехлетними девочками. Именно поэтому психологи, например Пиаже, думали, что дети иррациональны и нелогичны. Но у них также есть сверхъестественная способность нацеливаться как раз на подходящие странные гипотезы; на самом деле они с этим справляются существенно лучше, чем взрослые.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]»

Представляем Вашему вниманию похожие книги на «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Array Коллектив авторов - Выдающиеся ученые о познании
Array Коллектив авторов
Коллектив авторов - Ученые против войны (с илл.)
Коллектив авторов
Отзывы о книге «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]»

Обсуждение, отзывы о книге «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x