Шон Кэрролл - Вселенная

Здесь есть возможность читать онлайн «Шон Кэрролл - Вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Знаменитый физик Шон Кэрролл в свойственной ему увлекательной манере объясняет принципы, которые лежат в основах научных революций от Дарвина до Эйнштейна, и показывает, как невероятные научные открытия последнего столетия изменили наш мир.
Что есть жизнь и смерть, каково наше место в этой Вселенной, как устроен мир на квантовом, космическом и человеческом уровне, как общечеловеческие ценности связаны с наукой. Четырнадцать миллиардов лет минуло с момента Большого взрыва, наблюдаемая область пространства заполнена несколькими сотнями миллиардов галактик, каждая галактика в среднем содержит сто миллиардов звезд. Человек — крошечное, незаметное существо. По сравнению со Вселенной человек еще мельче, чем атом по сравнению с Землей.
Мы малы, Вселенная велика. И у нас нет инструкции для ее познания. Тем не менее мы удивительно много узнали о том, как именно устроено все вокруг.

Вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

Для того чтобы понять время, удобно начать с пространства. Здесь, на поверхности Земли, простительно полагать, что существует принципиальная разница между «вверху» и «внизу», глубоко укоренившаяся в структуре реальности. В действительности же, на уровне законов физики, все направления в пространстве равны. Если бы вы были космонавтом, вышли в скафандре в открытый космос и занялись бы там какой-то работой, то не заметили бы никакой разницы между любыми пространственными направлениями. Явные различия между «верхом» и «низом» заметны не потому, что такова природа пространства, а потому, что мы живём вблизи от очень значительного объекта: Земли.

Со временем всё точно так же. В нашем обыденном мире ход времени ни с чем не спутаешь, и простительно полагать, что существует принципиальная разница между прошлым и будущим. На самом деле оба направления времени равноценны. Явные различия между «прошлым» и «будущим» заметны не потому, что такова природа времени, а потому, что мы существуем вскоре после очень значительного события: Большого взрыва.

Вспомните Галилея и закон сохранения импульса: физика упрощается, если игнорировать трение и другие обременительные эффекты, а рассматривать изолированные системы. Итак, давайте представим себе, что маятник качается вперёд и назад, а для удобства предположим, что наш маятник находится в герметичной вакуумной камере и не испытывает сопротивления воздуха. При этом кто-то записывает на плёнку движение маятника и потом показывает вам этот ролик. Вы не слишком впечатлены — ведь вы видели маятники и раньше. Тогда вам открывают тайну: на самом деле ролик воспроизводился в обратном направлении. Вы этого не заметили, так как маятник, отмеряющий время назад, выглядит точно так же, как и отмеряющий время вперёд.

Это простой пример, иллюстрирующий очень общий принцип. Если система в соответствии с законами физики может каким-либо образом изменяться «вперёд», то возможна и её эволюция в обратном направлении, «назад». Законы физики никоим образом не регламентируют, что явления могут происходить только в одном направлении времени, но не в другом. Физические движения, насколько нам известно, обратимы . Оба направления времени равноценны.

Всё это кажется достаточно разумным в случае простых систем: маятников, планет, вращающихся вокруг Солнца, хоккейной шайбы, скользящей почти без трения. Но если задуматься о сложных макроскопических системах, то весь наш опыт свидетельствует о том, что определённые процессы развиваются во времени именно от прошлого к будущему, но не наоборот. Яйца разбиваются и зажариваются, но их нельзя разжарить и залить обратно в скорлупу; духи рассеиваются по комнате, но никогда не возвращаются во флакончик; сливки смешиваются с кофе, но спонтанно разделить их нельзя. Если существует гипотетическая симметрия между прошлым и будущим, почему столь многие повседневные процессы происходят лишь от прошлого к будущему, но не наоборот?

Даже в случае таких сложных процессов оказывается, что возможны обратные процессы, полностью согласующиеся с законами физики. Яйца могут собраться в скорлупу, духи — вернуться во флакончик, сливки — отделиться от кофе. Нам всего лишь потребуется вообразить, как траектория каждой частицы в нашей системе (а также в телах, с которыми она взаимодействует) изменяется на противоположную. Ни один из этих процессов не нарушает законов физики — дело только в том, что они крайне маловероятны. В сущности, вопрос не в том, почему мы никогда не видели желтка, вернувшегося в скорлупу, а в том, почему в прошлом мы видели яйца целыми.

* * *

Наше базовое представление об этих проблемах было впервые сформулировано во второй половине XIX века группой учёных, основавших новую научную дисциплину под названием «статистическая механика» . Одним из их лидеров был австрийский физик Людвиг Больцман. Именно он обратил внимание на феномен энтропии, считавшийся основной идеей в изучении термодинамики и необратимости, и соотнёс энтропию с микроскопическим миром атомов.

Людвиг Больцман гений энтропии и вероятности 18441906 До Больцмана энтропию - фото 8

Людвиг Больцман, гений энтропии и вероятности (1844–1906)

До Больцмана энтропию рассматривали в контексте неэффективности механизмов, например паровых двигателей, которые в те годы были ультрасовременной техникой. Всякий раз, сжигая топливо для выполнения полезной работы, например движения поезда, мы теряем часть энергии, выделяющейся в виде тепла. Энтропию можно понимать как способ измерения такой неэффективности; чем больше такой лишней теплоты, тем больше порождается энтропии. При этом, что бы вы ни делали, общая энтропия всегда будет положительной. Можно заморозить продукты в холодильнике, но при этом решётка у него сзади обязательно нагреется. Эта истина была сформулирована в виде второго закона термодинамики : общая энтропия закрытой системы никогда не уменьшается: с течением времени она либо остаётся постоянной, либо возрастает.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Вселенная»

Представляем Вашему вниманию похожие книги на «Вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Вселенная»

Обсуждение, отзывы о книге «Вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x