В древних легендах живописуется, сколько ухищрений применяли кузнецы, чтобы закалить булатные сабли. Но если разобраться во всех этих сказаниях, то выяснится, что для закалки использовались всего две жидкости — вода и растительное масло. Современная технология добавила к ним еще одну — минеральное масло. Но специалисты из Иркутского института органической химии утверждают, что в недалеком будущем воду и масло вытеснят другие составы — прежде всего водорастворимые полимеры.
При закалке в масле выделяется дым с неприятным запахом. Масло подчас вспыхивает, кроме того, оно всегда дефицитно. Что касается воды, то ее, разумеется вдосталь, но она образует на поверхности металла окисную пленку, которую надо затем удалять. А что предлагается теперь?
Берут ту же воду, но в ней растворяют полимеры, например, акриловые смолы, получаемые из отходов. Такая закалочная среда дешева, нетоксична и абсолютно пожаробезопасна. Важно и то, что слой полимера, оседая на поверхности горячего металла, препятствует образованию нагарной пленки. Служит жидкость в пять раз дольше, чем самое лучшее масло, — и в этом причина ее более высокой экономичности. Изменяя концентрацию полимера в водном растворе и время выдержки в нем, можно закаливать изделия любых форм и любых марок стали.
Никого не удивляет, что специалистам нередко поручают создать материалы и вещества с заранее заданными свойствами: кислотостойкую резину, чугун без хрупкости, бетон легче воды или полимер, более прочный, чем цветной сплав. А можно ли создавать растения с заранее заданными качествами?
На этот вопрос положительно отвечают специалисты по генетике, способные делать феноменальные изобретения. Именно изобретения, то есть новые виды растений, которых в природе никогда не было. Например, кусты, летом дающие помидоры, а к осени образующие у своих корней крупные картофельные клубни. Генетики обещают вывести растения, у которых тонкие корни будут прочными, как синтетические нити. Вершки пойдут на корм скоту, а корешки — на текстильные фабрики.
Действуя в этом направлении, сотрудники Института цитологии и генетики СО АН СССР, взяв за основу дикую алтайскую облепиху с мелкими ягодами, вывели крупноплодную форму, у которой плоды размером с вишню. Вес ста штук таких ягод равен 64 г. против 24 у диких кустов. Витамина С стало на 100 процентов больше, а целебного масла — на 14 процентов больше. Ученые увеличили содержание в ягодах биологически активных веществ и рекомендуют новый сорт как общеукрепляющее средство в условиях сурового климата Сибири.
К этому достижению сибирские генетики пришли благодаря освоению методов экспериментального мутагенеза. Вначале семена дикой облепихи они облучили гамма-лучами, потом обработали химическими веществами и в результате изменили механизм наследственности, главный чертеж, по которому строится живой организм. У нового сорта, получившего название «зырянка», прочная оболочка семян, более длинная плодоножка. Это и было заранее запрограммировано учеными, получившими задание: создать облепиху, приспособленную к механизированному сбору урожая.
Экономия энергии — непреложный закон нашего времени. И ныне усилия инженеров направлены на то, чтобы утилизировать бросовое тепло доменных и мартеновских печей, кислородных конвертеров и промышленных печей. Есть такие резервы и в химической промышленности…
При синтезе многих веществ конечная продукция выходит в нагретом виде. Обычно ей дают постепенно охладиться, то есть отдать свое тепло в атмосферу. А ведь эти сбросы можно утилизировать, без всяких затрат угля и газа обогревать дома и теплицы. За примерами далеко ходить не надо: серная кислота, завершая цикл производства, выходит нагретой до 140 °C. Использовать эту теплоту решили на Винницком химическом заводе. Для этого был построен теплообменник, в котором вода, охлаждая кислоту, нагревается и идет на отопление зданий.
Казалось бы, просто. Но изобретателям пришлось поломать голову. Ведь серная кислота чрезвычайно агрессивна. Поэтому пришлось применить ряд последовательно соединенных трубчатых теплообменников, в которых кислота отдает свою энергию сперва промежуточному теплоносителю, а уж он — нагреваемой воде. Подобным же способом можно получать тепло при производстве соды, кокса, полимерных смол, цемента, аммиачной селитры, хлористого кальция.
Читать дальше