Возможно, именно из-за серьезных возражений Эйнштейна по поводу вероятностной трактовки волновой функции М. Борн получил Нобелевскую премию лишь в 1954 г., в то время как Вернер Гейзенберг удостоился ее уже в 1932 г. за разработанный в 1927 г. принцип неопределенности, остающийся до настоящего времени одним из ключевых моментов квантовой физики. С пугающей прямолинейностью этот принцип утверждает, что положение и скорость субатомной частицы нельзя измерить одновременно, поскольку сам процесс измерения приводит к изменению либо скорости, либо координаты. Собственно говоря, и в обыденной жизни мы на каждом шагу сталкиваемся с принципом неопределенности, так как абсолютная точность измерений в макромире тоже невозможна (например, измеряя рулеткой картину, мы получаем примерные размеры, из-за чего приготовленная рамка оказывается меньше требуемой, и мы вставляем картину, применив некоторое усилие). Для крупномасштабных объектов эти обстоятельства обычно роли не играют, но на субатомном уровне даже слабый толчок может заставить электрон «выпрыгнуть» из атома с огромной скоростью. Атомные структуры настолько хрупки, что их может разрушить попадание единственного фотона. Кроме того, увеличение точности измерения положения увеличивает погрешность в определении скорости, и наоборот. Субатомные частицы, образно говоря, плохо поддаются ловле. Иногда, впрочем, эта неопределенность может играть и положительную роль. Например, происходит туннелирование сквозь барьер, которое объясняется тем, что на очень короткое время (предположим, на одну миллиардную долю секунды, которую физики называют наносекундой) субатомная частица может изменить свою природу и проникнуть сквозь непреодолимый энергетический барьер. Такие события можно использовать в практических целях, например, для создания «сканирующих туннельных микроскопов» (СТМ). Первый микроскоп этого типа был сконструирован Гердом Биннингом и Генрихом Рорером в одном из исследовательских центров фирмы IBM (Цюрих, Швейцария) в 1981 г., а сейчас они получили широкое распространение. СТМ позволяют изучать поверхность объектов деталей размером до миллиардной доли метра, что дает возможность рассмотреть и сфотографировать цепочки атомов.
Вернер Гейзенберг в молодости, когда он сформулировал знаменитый «принцип неопределенности», который внес в квантовую физику дух таинственности. (С любезного разрешения Американского института физики. Архив Эмилио Сегре.)
1920-е годы были временем бурного развития квантовой теории, когда серьезные публикации появлялись чуть ли не каждую неделю. В 1927 г. швейцарский физик Вольфганг Паули сформулировал принцип, согласно которому две частицы в атоме не могут одновременно иметь одинаковые наборы квантовых чисел, т. е. находиться в одинаковых квантовых состояниях (этим впоследствии объяснили различные типы кварков и наличие у них «цвета»). Принцип запрета Паули кажется проще других положений квантовой теории, но он имеет огромное практическое значение, поскольку позволяет связать теорию с другими научными дисциплинами. Периодическая система элементов, построенная русским химиком Дмитрием Менделеевым и дополненная впоследствии рядом других ученых, позволила систематизировать химические элементы в соответствии с их атомными весами. Элементы со сходными свойствами (например, натрий и калий) располагаются в таблице с определенной периодичностью, причина которой оставалась непонятной до тех пор, пока не появился принцип запрета Паули.
Принцип Паули позволяет объяснить периодичность, связывая ее с орбитами, по которым электроны вращаются вокруг ядра подобно планетам в Солнечной системе. В справочнике «Physics in the Twentieth Century» («Физика в двадцатом столетии») Курт Сапли пишет по этому поводу: «По мере увеличения размеров атомов последовательно заполняются электронные энергетические уровни, или «оболочки». Рано или поздно два электрона должны были бы оказаться в одинаковых квантовых состояниях, так что один из них должен перейти на следующую оболочку. Химические свойства элементов определяются числом электронов, расположенных на внешних оболочках, заполненных лишь частично. Тем самым химия оказывается нераздельно связана с квантовой теорией». В 1931 г. Паули предсказал также существование нейтрино — электрически нейтральной частицы, которая была обнаружена лишь в 1955 г. За открытие принципа запрета В. Паули получил Нобелевскую премию в 1945 г., одним из последних среди физиков первого поколения, разработавших квантовую теорию. Возможно, это объясняется тем, что он был довольно язвительным критиком многих коллег. Например, по поводу идеи, связанной с паранормальными явлениями, Паули сказал, что «ее нельзя считать даже неправильной».
Читать дальше