Если предположить, что ни на одном номере ни одного японского автомобиля во второй паре цифр не стоят 00, то каждый номерной знак, сфотографированный Кадзи, — это строка в таблице умножения от 1 до 9. Например, знак 1101 можно воспринимать как 1 × 1 = 1. Подобным же образом, 1202 — это 1 × 2 = 2. Если продвигаться дальше по списку, то получится, что всего имеется 81 возможная комбинация. Кадзи уже собрал более 50. Когда у него будет полная таблица умножения, он намеревается устроить выставку своих фотографий.
* * *
Идее о том, что числа могут пригодиться для развлечения, столько же лет, сколько и самой математике. Например, древнеегипетский папирус Ринда содержит следующий список, составляющий часть ответа на задачу № 79. Данная задача, в отличие от других задач из этого папируса, не имеет никакого очевидного практического применения:
Домов |
7 |
Кошек |
49 |
Мышей |
343 |
Спельты |
2401 |
Гекатов [39] Гекат — древнеегипетская мера объема. |
16 807 |
Всего |
19 607 |
Этот список — описание семи домов, в каждом из которых семь кошек, каждая из которых съела семь мышей, каждая из которых съела семь зерен спельты, каждое из которых взято из отдельного геката. Эти числа образуют геометрическую прогрессию — то есть последовательность, каждый член в которой вычисляется путем умножения предыдущего члена на одно и то же число (в данном случае — семь). Кошек в семь раз больше, чем домов, мышей в семь раз больше, чем кошек, зерен спельты в семь раз больше, чем мышей, а гекатов в семь раз больше, чем зерен спельты. Полное число объектов можно записать в виде суммы 7 + 72 + 73 + 74 + 75.
Впрочем, не только древним египтянам такая последовательность казалась неотразимой. Почти точно та же сумма фигурирует в книжке «Стихи Матушки Гусыни» — детском сборнике начала XIX века:
Еду я как-то в Шерборн-Сент-Джон,
А навстречу Джон и семь его жен.
У каждой жены по семь лукошек,
В каждом лукошке семь кошек,
У каждой кошки по семь котят —
А ну сосчитай-ка попробуй, брат,
Котят да кошек, лукошки да жен, —
Сколько всего их едет в Сент-Джон?
Это стихотворение [40] Перевод Е. Чевкиной.
— одна из наиболее известных в английской литературе задачек с подвохом, потому что, как можно сообразить, весь отряд женщин и путешествующих поневоле представителей семейства кошачьих, двигались из Сент-Айвс. Впрочем, каким бы ни было направление их движения, полное число котят, кошек, корзинок и жен составляет 7 + 72 + 73 + 74, что равно 2800.
Другое — не столь широко известное — изложение этой загадки содержится в одной из задач в написанной в XIII столетии книге Леонардо Фибоначчи «Liber Abaci». В этом варианте участвуют семь женщин, а далее все возрастающие количества мулов, мешков, ломтей хлеба, ножей и ножен. Сделанное добавление доводит последовательность до 7 6, так что полное число предметов равно 137 256.
В чем же привлекательность степеней числа семь, обусловливающая их появление в столь различные времена в столь различных контекстах? Каждый из примеров демонстрирует все возрастающее ускорение, характерное для геометрической прогрессии. Стихотворение — это поэтический способ выразить, сколь быстро малые числа способны приводить к большим. При первом чтении вы можете подумать, что там какое-то разумное число котят, кошек, корзинок и жен, — но в действительности их почти три тысячи! Точно так же занимательные задачи из папируса Ринда и «Liber Abaci» выражают то же самое глубокое математическое наблюдение. Причем число 7 — пусть иногда и кажется, что оно уж очень часто возникает в подобных задачах из-за каких-то своих особенных свойств, — само по себе не важно. Стоит несколько раз умножить любое число [41] Любое число больше единицы. В тексте речь идет, более специально, о целых положительных числах больше единицы. ( Примеч. перев. )
само на себя, как ответ быстро выходит за пределы ожидаемого.
Даже при перемножении на себя самого меньшего из возможных чисел — числа 2 — ответ устремляется в небеса с головокружительной скоростью. Положим одно пшеничное зернышко на клетку шахматной доски, на соседнюю клетку — два зерна и далее примемся заполнять всю доску, каждый раз удваивая число зерен. Сколько пшеницы тогда окажется на последней клетке? Быть может, несколько грузовиков? Или контейнер? На шахматной доске 64 клетки, так что нам надо выполнить удвоение 63 раза, что означает число 2, умноженное само на себя 63 раза, или 2 63. В терминах пшеничных зерен это число примерно в сто раз превосходит все годовое производство пшеницы в мире. А можно посмотреть и по-другому: если пересчитывать зерна так, чтобы на каждое зерно уходила одна секунда, и при этом начать счет в момент Большого взрыва, случившегося около 13 миллиардов лет назад, то к настоящему моменту вы не дойдете и до десятой доли числа 2 63.
Читать дальше