Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь есть возможность читать онлайн «Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: КоЛибри, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Автор:
  • Издательство:
    КоЛибри
  • Жанр:
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-389-01770-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
2 × 1 = 2, 3 × 1 = 3, 4 × 1 = 4, 6 × 1 = 6,
2 × 2 = 4, 3 × 2 = 6, 4 × 2 = 8, 6 × 2 = 10,
2 × 3 = 6, 3 × 3 = 9, 4 × 3 = 10, 6 × 3 = 16,
2 × 4 = 8, 3 × 4 = 10, 4 × 4 = 14, 6 × 4 = 20,
2 × 5 = Χ, 3 × 5 = 13, 4 × 5 = 18, 6 × 5 = 26,
2 × 6 = 10, 3 × 6 = 16, 4 × 6 = 20, 6 × 6 = 30,
2 × 7 = 12, 3 × 7 = 19, 4 × 7 = 24, 6 × 7 = 36,
2 × 8 = 14, 3 × 8 = 20, 4 × 8 = 28, 6 × 8 = 40,
2 × 9 = 16, 3 × 9 = 23, 4 × 9 = 30, 6 × 9 = 46,
2 × Χ = 18, 3 × Χ = 26, 4 × Χ = 34, 6 × Χ = 50,
2 × 1Ƹ = 1Χ, 3 × Ƹ = 29, 4 × Ƹ = 38, 6 × Ƹ = 56,
2 × 10 = 20, 3 × 10 = 30, 4 × 10 = 40, 6 × 10 = 60.

Посмотрите на последние цифры в каждом столбце, и вы увидите замечательную закономерность. При умножении на 2 вы, конечно, получаете четные числа; при умножении на 3 — числа, оканчивающиеся на 3, 6, 9 и 0; при умножении на 4 — числа, оканчивающиеся на 4, 8 и 0, а при умножении на 6 — числа, оканчивающиеся на 6 или 0. Другими словами, при основании 12 мы получаем таблицу умножения на 2, 3, 4 и 6 «забесплатно». Поскольку многие дети испытывают сложности в запоминании таблицы умножения, переход к основанию 12 был бы гуманитарным актом величайшего масштаба. Так, по крайней мере, утверждают некоторые ученые.

Самым знаменитым призывом к борьбе за дюжину стала статья писателя Ф. Эмерсона Эндрюса, опубликованная в «Atlantic Monthly» в октябре 1934 года. Эта статья привела к созданию Американского дуодецимального общества (АДО). (Впоследствии название было изменено на Американское дюжинное общество). Эндрюс утверждал, что принятие десятичной системы означало «не имеющую оправдания недальновидность, и ставил вопрос о том, будет ли отказ от нее сопряжен с „колоссальными потерями“». «Duodecimal Bulletin», который продолжает выходить по сей день, представляет собой отличное издание и единственное место за пределами медицинской литературы, где появляются статьи о гексадактильности — шести пальцах при рождении. (Она распространена более широко, чем можно было бы подумать: один из каждых 500 людей рождается по крайней мере с одним лишним пальцем на руках или ногах.) Юношеская страсть Майкла де Флигера к основанию 12 не увяла; в настоящий момент он является президентом АДО. Майкл столь привержен к этой системе, что использует ее в своей работе дизайнера цифровых архитектурных моделей.

Как мы уже отмечали, таблицу умножения с основанием 12 учить определенно легче. Но еще одно величайшее преимущество этого основания заключается в том, что оно облегчает действия с дробями. Когда вы собираетесь поделить одно число на другое, основание 10 зачастую проявляет изрядную строптивость. Например, одна треть от 10 равна 3,33…, где тройки продолжаются до бесконечности. Четверть от 10 равна 2,5, где потребовался разряд после запятой. При основании же 12 треть от 10 — это 4, а четверть от 10 — это 3. Неплохо, правда? Будучи выражена в процентах, треть становится 40 процентами [5] Терминология, как это часто бывает при работе с другими основаниями, требует осторожности. Речь идет не о про центах, то есть не о сотых долях, а о сто сорок четвертых долях. Для полной ясности выполним деление, пользуясь десятичной системой, а затем переведем результат в двенадцатеричную. Будем указывать основание в виде нижнего индекса: 100 12 /3 = 144 10 /3 = 48 10 = 40 12 ( Примеч. перев. ) , а четверть — 30 процентами. На самом деле, если посмотреть, как именно 100 делится на числа от 1 до 12, то станет ясно, что основание 12 приводит к более компактной системе:

Доля от 100 Десятичн. Дюжинн.
Целое 100 100
Половина 50 60
Треть 33,333… 40
Четверть 25 30
Пятая 20 24;97…
Шестая 16,666… 20
Седьмая 14,285 18;6Χ35…
Восьмая 12,5 16
Девятая 11,111… 14
Десятая 10 12;497…
Одиннадцатая 9,09… 11;11…
Двенадцатая 8,333… 10

(точка с запятой означает «дюжинную запятую»)

Именно из-за этой возросшей точности основание 12 оказывается лучше приспособлено к тому, что требуется Майклу. Пусть даже его клиенты сообщают ему замеры в десятичной системе, он все равно предпочитает перевести их в дюжинную. «У меня появляется больше свободы, когда дело касается разбиения на несколько частей, — говорит он. — Когда не имеешь дела с путаными дробями, легче удостовериться, что все ко всему подходит. Иногда, из-за сжатых сроков или внесенных в последний момент изменений, мне приходится быстро много чего поменять прямо на месте, — сделать такое, что не укладывается в первоначальную разметку. Вот тогда важно иметь предсказуемые простые отношения. Для дюжин у меня больше выбора, с ними проще, чем с десятками, и делается все быстрее». Более того, Майкл полагает, что использование основания 12 дает его бизнесу определенное преимущество, подобное тому, что получают велосипедисты и пловцы, полностью сбривая волосы на ногах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»

Представляем Вашему вниманию похожие книги на «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Алекс Беллос
Отзывы о книге «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»

Обсуждение, отзывы о книге «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x