Результаты, полученные Нидером, позволяют объяснить, почему наша интуиция тяготеет к приближенному восприятию чисел. Когда обезьянка думает о числе 4, наиболее активны, конечно, нейроны, которые предпочитают число 4. Но нейроны, которые предпочитают тройку, и нейроны, которые предпочитают пятерку, тоже активны, хотя и в меньшей степени. Это, по-видимому, связано с тем, что мозг обезьянки при этом одновременно думает и о числах, окружающих четверку. «Восприятие числа размыто шумом, — объясняет Нидер. — Обезьяны способны представлять себе кардинальности только приблизительным образом».
Можно быть почти уверенным, что то же самое происходит и в человеческом мозгу. Тут возникает интересный вопрос; если наш мозг способен представлять числа только на оценочном уровне, то как же мы вообще сумели их «изобрести»? «Восприятие чисел в точном смысле — это уникальное свойство человеческого мозга, которое, скорее всего, развилось из нашей способности точно выражать числа с помощью символов», — заключает Нидер. Таким образом, числа — артефакт, продукт человеческой культуры, а не что-то, данное нам от природы.
Автор узнает о тирании десяти и о тех, кто замышляет ее ниспровержение, а затем посещает внеклассные занятия в Токио, где ученики осваивают вычисления, думая о бусинках.
В Средние века в Англии, в Линкольншире, «pimp» плюс «dik» равнялось «bumfit». И в том не было ничего необычного. Эти слова просто обозначали числа пять, десять и пятнадцать на жаргоне, которым при счете овец пользовались пастухи. Полный набор этих числительных выглядел так:
1. Yan |
11. Yan-a-dik |
2. Tan |
12. Tan-a-dik |
3. Tethera |
13. Tethera-dik |
4. Pethera |
14. Pethera-dik |
5. Pimp |
15. Bumfit |
6. Sethera |
16. Yan-a-bumfit |
7. Lethera |
17. Tan-a-bumfit |
8. Hovera |
18. Tethera-bumfit |
9. Covera |
19. Pethera-bumfit |
10. Dik |
20. Piggot |
В наши дни мы считаем по-другому, — и дело не только в том, что тут все слова незнакомые. Линкольнширские пастухи организовывали числа в группы по двадцать, начиная счет со слова уап и заканчивая словом piggot. Если у пастуха было более двадцати овец — при условии, что он не заснет, занимаясь их пересчетом, — ему приходилось делать отметку о том, что он закончил один цикл, например положив камешек в карман или проведя линию на земле. После этого он опять начинал считать сначала: «Yan, tan, tethera». Если у него восемьдесят овец, то в кармане у него в конце концов окажется четыре камушка или же на земле будут нарисованы четыре линии.
В современном мире мы, разумеется, группируем числа десятками, так что в нашей числовой системе десять цифр. Число, выражающее размер группы, используемой при счете, — которое к тому же часто совпадает с числом используемых символов, — называется основанием системы счисления, так что наша десятичная система имеет основание десять, а принятая у английских пастухов — двадцать.
Если при счете не пользоваться каким-либо разумным основанием, с числами вообще невозможно иметь дело. Представим себе, что у пастухов система счета с основанием единица. Это означает, что у них имеется только одно слово для чисел, уап , обозначающее единицу. «Два» тогда будет уап уап. «Три» — уап уап уап. Восемьдесят овец потребуют произнесения слова уап восемьдесят раз. Такая система достаточно бесполезна для счета чего бы то ни было, превосходящего числом тройку. С другой стороны, вообразим, что каждое число выражается отдельным новым словом, так что способность досчитать до восьмидесяти потребует запоминания восьмидесяти разных слов. Попробуйте-ка теперь досчитать до тысячи!
Многие сообщества людей, живущих в изоляции, до сих пор используют нестандартные основания. Представители племени арара, живущие в Амазонии, например, считают парами, выражая числа от одного до восьми таким образом: анане, адак, адак анане, адак адак, адак адак анане, адак адак адак анане, адак адак адак адак. Счет двойками — не слишком большое усовершенствование по сравнению со счетом единицами. Чтобы добраться до сотни, придется повторить адак пятьдесят раз подряд — спорить и торговаться на базаре окажется делом, занимающим немало времени. В Амазонии также встречаются системы счета с основаниями 3 и 4.
Число, являющееся основанием, должно быть достаточно большим, чтобы позволять проговаривать числа типа сотни, не сбиваясь с дыхания, но при этом не настолько большим, чтобы нам приходилось перенапрягать память. Наиболее распространенные в истории основания — это 5, 10 и 20, и нетрудно понять почему. Эти числа получены из человеческого тела. У нас пять пальцев на руке, так что пять — первое число, которое просится, чтобы на нем перевели дух при счете от одного и выше. Следующая естественная пауза происходит из-за наличия двух рук, или десяти пальцев, а вслед за тем — двадцати пальцах на руках и ногах. (Некоторые системы — составные. Например, Линкольнширский лексикон для счета овец содержит основания 5 и 10, а также основание 20: первые десять чисел уникальны, а следующие десять сгруппированы в пятерки.) Роль, которую исторически сыграли пальцы, отражена в используемых словах, не в последнюю очередь — в наличии двух значений слова «digit» [2] Два значения — цифра (то есть однозначное число) и палец. ( Примеч. перев. )
. Например, в России число «пять» соотносится со словом «пясть», обозначающим раскрытую ладонь. Аналогичным же образом, слово «пять» на санскрите — панча — связано с персидским пенча , что также обозначает руку.
Читать дальше