Виолетта Гайденко - Западноевропейская наука в средние века - Общие принципы и учение о движении

Здесь есть возможность читать онлайн «Виолетта Гайденко - Западноевропейская наука в средние века - Общие принципы и учение о движении» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 1989, ISBN: 1989, Издательство: Наука, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Западноевропейская наука в средние века: Общие принципы и учение о движении: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Западноевропейская наука в средние века: Общие принципы и учение о движении»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге на фоне широкого социокультурного контекста раскрывается процесс становления и развития научного знания в средние века. Подробно анализируется формирование стиля научного мышления, показывается преемственность науки средневековья и нового времени.
Для специалистов в области истории науки и культуры, логики и методологии научного познания.

Западноевропейская наука в средние века: Общие принципы и учение о движении — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Западноевропейская наука в средние века: Общие принципы и учение о движении», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы оценить вклад мертонской школы в формирование математического понятия непрерывности (и в учение о движении, понимаемом как непрерывный процесс), недостаточно отметить, что в работах представителей этой школы дискретные последовательности становятся рабочим инструментом исследования непрерывности; надо учесть, что хотя античная математика и сформулировала ряд примеров числовых последовательностей (например, арифметическая и геометрическая прогрессия), но, во-первых, последовательность так таковая, как особого рода математический объект, не была в ней предметом специального исследования, а, во-вторых, указанные последовательности играли весьма незначительную роль в математических исследованиях. Античные математики занимались главным образом сопоставлением величин, скажем, величин отрезков, составляющих ту или иную геометрическую фигуру; с этой целью в античности была детально разработана теория пропорций, позволяющая сравнить между собой любые конечные величины. В тех сравнительно немногочисленных случаях, когда применялись инфинитезимальные методы, использовался процесс последовательного приближения к пределу, однако, как правило, в контексте решения геометрических задач; обобщенная, теоретико-числовая формулировка построений такого типа отсутствовала в математике древних. И в этом отношении работы мертонцев представляют значительный шаг вперед.

В работах Хейтсбери, Суайнсхеда, Дамблтона. происходит переосмысление понятия величины. В античной математике господствовали геометрические интуиции: величины представлялись в ней в виде отрезков различной длины. Такая геометрическая трактовка понятия величины была неслучайной. Существует несомненная связь между аристотелевской концепцией движения и античным понятием величины. Как движение (увиденное сквозь призму целевого определения), так и отрезок характеризуют, по сути дела, одним и тем же способом: путем задания двух точек, начальной и конечной. Вследствие этого и отрезок, и понимаемое таким образом движение предстают как нечто данное, завершенное, воспринимаемое сразу, целиком.

«Геометризация» величин влечет за собой выдвижение на первый план количественных характеристик: в центре внимания оказались те особенности понятия величины, которые схватываются понятием «количественное число»; геометрия древних не благоприятствовала развитию интуиции, заложенных в порядковых характеристиках числа. Для этого необходимо было от оперирования с актуально данными количествами перейти к величинам, рассматриваемым в процессе их последовательного порождения. Пусть это будут величины, характеризующие длину отрезков, но не заранее данных, а получаемых в определенном порядке в результате повторного деления исходного отрезка на равные части. Именно это и делают исследователи из Мертон-колледжа.

4.3. Различение экстенсивных и интенсивных параметров движения. Скорость как интенсивная величина

В рамках учения об интенсии и ремиссии мертонцы создают основы нового учения о движении, радикально переосмысляя в ряде пунктов аристотелевскую концепцию движения. Главную роль в их учении о движении играет понятие равноускоренного движения (униформно-дифформного, по их терминологии). «Всякое движение является равномерно ускоренным (uniformiter intenditur), если за любую равную часть времени оно приобретает равное приращение (latitudo — буквально, широту) скорости» [103, 241]. Ключевым понятием в этом определении, безусловно, является понятие «скорость» (velocitas). У Аристотеля, как известно, не было термина, аналогичного средневековому velocitas; описывая движения, он выделял среди них «более быстрые» и «более медленные». Эти выражения только в том случае могут интерпретироваться как указывающие на различие скоростей при сопоставлении разных движений, если понятие скорости как таковое уже есть; до тех пор, пока оно не сформировано, приписывать терминам «более быстрое» и «более медленное» тот же смысл, что и более позднему термину «скорость», нельзя, не стирая принципиальной границы, отделяющей ранний (аристотелевский) этап в развитии учения о движении от более поздних (мертонского и галилеевского). Чтобы убедиться в этом, достаточно обратить внимание на аристотелевское определение «более быстрого» (из которого, путем очевидных модификаций, получается и определение «более медленного»). Аристотель дает два варианта определения: более быстрое движение 1) преодолевает то же расстояние за меньшее время; 2) за одно и то же время преодолевает большее расстояние. Отметим прежде всего то обстоятельство, что в определении идет речь о разных движениях, а не о частях одного и того же движения. Это не случайно, ибо сравнению подлежит уже закончившееся, завершенное движение, точнее, его результат, выражающийся в прохождении некоторого отрезка пути за определенный отрезок времени.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Западноевропейская наука в средние века: Общие принципы и учение о движении»

Представляем Вашему вниманию похожие книги на «Западноевропейская наука в средние века: Общие принципы и учение о движении» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Западноевропейская наука в средние века: Общие принципы и учение о движении»

Обсуждение, отзывы о книге «Западноевропейская наука в средние века: Общие принципы и учение о движении» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x