Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки

Здесь есть возможность читать онлайн «Карл Саббаг - Веревка вокруг Земли и другие сюрпризы науки» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Ломоносовъ, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Веревка вокруг Земли и другие сюрпризы науки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Веревка вокруг Земли и другие сюрпризы науки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Есть детские вопросы, на которые не каждый взрослый ответит: почему ночью небо темное? почему мы не проваливаемся сквозь пол? кто изобрел колесо? почему зеркало меняет местами только лево и право, а не верх и низ? Карл Саббаг подробно разбирает эти и многие другие загадки (да-да, загадки, причем Большой Науки!), и не просто разбирает, а легко, доходчиво, с хорошим юмором рассказывает об окружающих нас чудесах физики, химии, биологии, психологии и даже космологии. Вот еще вопросы: как работает Гугл? можно ли увидеть нейтрино? что такое пятый вкус, о котором никто не знает, кроме японцев? обижаются ли на нас собаки? кто был автором первого в истории мультфильма? Интересно? При чтении этой книги будет еще интереснее! Потому что именно с такой целью она и писалась: напомнить нам, что мир вокруг таинствен и удивителен.
Карл Саббаг (р. 1942) — британец палестинского происхождения, писатель, журналист, телевизионный продюсер. Автор многих научно-популярных книг, документальных фильмов и научно-популярных телесериалов.

Веревка вокруг Земли и другие сюрпризы науки — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Веревка вокруг Земли и другие сюрпризы науки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Веревка вокруг Земли

Если бы можно было опоясать всю Землю веревкой так, чтобы она проходила непосредственно по линии экватора, то насколько потребовалось бы удлинить веревку, пожелай мы приподнять ее на метр над поверхностью планеты?

Первое, что приходит в голову: чтобы приподнять веревку на всем протяжении на метр, нужно проделать кое-какие расчеты с использованием изначальной длины веревки, то есть длины окружности Земли. Но если вам скажут, что длина веревки, натянутой плотно по экватору, приблизительно равна 40 000 километрам, поможет ли вам эта информация? Конечно, так и тянет предположить, что для получения зазора на всем протяжении понадобится нарастить веревку на несколько километров. Но что, если я сообщу вам, что правильный ответ никак не связан с исходной длиной?

Поиск ответа сводится к нахождению разницы между длинами двух окружностей: окружности с диаметром как у Земли и окружности с диаметром на два метра больше, чем у Земли (по метру с каждой стороны). Назовем первую величину ОЗ, а вторую ОЗ+. Теперь осталось выяснить еще одну вещь. Длина любой окружности равна ее диаметру, умноженному на постоянное число π (см. главу « π = 3»), которое примерно составляет 3,14. Итак, можно сказать, что ОЗ = 3,14×ДЗ, а ОЗ+ = 3,14 × (ДЗ + 2), где ДЗ — диаметр Земли. Чтобы узнать дополнительную длину веревки, нужно вычесть ОЗ из ОЗ+. То есть вычесть 3,14 × ДЗ из 3,14 × (ДЗ + 2). Раскроем во втором выражении скобки и преобразуем его: 3,14 × ДЗ + 3,14 × 2. Из этой записи очевидно, что правильный ответ:

Дополнительная длина веревки = 3,14 × ДЗ + 3,14 × 2 − 3,14 × ДЗ.

Или, если переставить местами:3,14 ×ДЗ − 3,14 ×ДЗ + 3,14×2. Разумеется, эти вычисления далеки от тех, какими занимается Стивен Хокинг [20] Стивен Хокинг (р. 1942) — знаменитый английский астрофизик, профессор гравитационной физики, профессор математики. Несмотря на тяжелую болезнь, вызвавшую почти полный паралич, продолжает работать. Автор научно-популярной книги «Краткая история времени». Обладатель многочисленных наград за вклад в науку. ( Прим. перев.). , но сделаем скидку на то, что большинству из нас не каждый день приходится жонглировать плюсами, минусами, скобками и знаками равенства. Даже из таких примитивных расчетов явно следует, что длина веревки вырастет не на сотни километров и даже не на один километр, а всего на два раза по 3,14 метра.

Поскольку реальная длина веревки в наших расчетах не фигурировала, можно сделать вывод: чтобы диаметр любого веревочного круга любого размера вырос на 1 м, надо удлинить веревку всего на 3,14 м. Возьмете ли вы веревку, натянутую вокруг основания купола лондонского собора Святого Павла (110 метров), или веревку, проходящую по орбите Юпитера (около 5 миллиардов километров), надставить ее придется на одни и те же 3,14 метра.

Моцарт. Вальс для двух игральных костей

Вы не поверите, но австрийский композитор и педагог Иоганн Гуммель и его учитель, великий Вольфганг Амадей Моцарт, сами того не зная, занимались теорией вероятности — они сочиняли музыкальные пьесы, чей окончательный вид определялся броском костей.

В 1793 году, спустя два года после смерти наставника, Гуммель издал таблицу музыкальных тактов, которую, по его словам, составил сам Моцарт с целью создать невероятно большое количество вариантов «Вальса для двух игральных костей» — причем с участием публики. Таблица состояла из 171 такта, разделенных на 16 групп по 11 тактов. Каждая из шестнадцати групп предусматривала 11 вариантов развития. Зрители должны были бросать две игральные кости и, в зависимости от выпавших чисел (от 2 до 12), составлять последовательность номеров, определявших, какой вариант каждого такта нужно играть. Скажем, если на костях последовательно выпадало 3, 8, 9, 6, 3, 4, 2, 7, 5, 8, 8,12,10, 4, 7, 6, то, вычтя из каждого числа по единице (потому что бросок двух костей никогда не даст в сумме номер 1), музыканты исполняли вальс, играя второй вариант такта 1, седьмой вариант такта 2 и далее по тому же принципу. Таким образом, каждое исполнение пьесы становилось уникальным и неповторимым. При бросках двух костей скомбинировать числа от 1 до 11 (или от 2 до 12) можно 759 499 667 966 482 способами, так что вероятность исполнить именно тот один из сотен триллионов вариант, который публика уже слышала, ничтожно мала. А на то, чтобы сыграть все возможные варианты, потребовалось бы более 500 миллионов лет.

Кстати, если вы полагаете, будто Моцарта звали просто Вольфганг Амадей, то, может быть, вы удивитесь, узнав, что это не совсем так. Когда о фантастическом таланте восьмилетнего Моцарта узнал весь мир, некий Дайне Баррингтон, эрудит и антиквар, человек строгий и требовательный, подверг мальчика серьезному экзамену в Лондоне, из которого юный гений вышел, конечно же, победителем. Баррингтон опубликовал результаты своих исследований — эта книга вышла в свет в Лондоне и была снабжена портретом мальчика с подписью: «Теофил Моцарт». Более того, найден лишь один прижизненный документ, где упоминалось бы имя Моцарта Амадей — латинизированная версия греческого Теофила. А при крещении ему дали имя Иоганн Хризостом Вольфганг Теофил, без всяких там Амадеев.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Веревка вокруг Земли и другие сюрпризы науки»

Представляем Вашему вниманию похожие книги на «Веревка вокруг Земли и другие сюрпризы науки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Веревка вокруг Земли и другие сюрпризы науки»

Обсуждение, отзывы о книге «Веревка вокруг Земли и другие сюрпризы науки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x