Давид Ласерна - Эйнштейн. Теория относительности. Пространство – это вопрос времени.

Здесь есть возможность читать онлайн «Давид Ласерна - Эйнштейн. Теория относительности. Пространство – это вопрос времени.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: Де Агостини, Жанр: sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Эйнштейн. Теория относительности. Пространство – это вопрос времени.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Эйнштейн. Теория относительности. Пространство – это вопрос времени.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.

Эйнштейн. Теория относительности. Пространство – это вопрос времени. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Эйнштейн. Теория относительности. Пространство – это вопрос времени.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На атомном уровне снаряды, которые раньше казались нам крохотными, становятся такими же огромными, как статуя, которую мы собрались изучать. Если для того чтобы, например, обнаружить электрон, мы начнем бомбардировку атома фотонами с низким энергетическим зарядом и большой длиной волны, получится, что мы бросаемся надувными шарами того же размера, что статуя. Чтобы получить точную информацию, придется увеличить энергию фотона, а это значит, что наши пули станут тверже. И это будет означать не только возможность разглядеть детали статуи, но и риск ее разрушить. Траектория отскока в этом случае будет говорить не столько о рельефе объекта, сколько о процессе его фрагментации. Как видите, наша попытка изучить феномен полностью меняет его суть.

Не такие уж второстепенные выводы Эйнштейна

«Второстепенные» изыскания Эйнштейна можно назвать таковыми только в сопоставлении с громадой теории относительности, но в действительности они сделали бы честь любому физику. В этих исследованиях главным героем снова выступает свет.

– При освещении металлической пластины ультрафиолетовым светом наблюдается высвобождение электронов. В 1902 году Филипп Ленард (1862-1947) обнаружил, что скорость испускаемых частиц растет с увеличением частоты света, но не его интенсивности. Эйнштейн объяснил этот феномен, названный фотоэлектрическим эффектом: энергетический заряд, переносимый каждым из фотонов, зависит от частоты света, и более интенсивное излучение приводит к увеличению числа испущенных поверхностью электронов, но не их энергии.

– Электроны взаимодействуют с фотонами, спонтанно повышая и понижая энергетическую шкалу. В 1917 году Эйнштейн задумался о возможности форсировать излучение. Необходимых условий было два: наличие атома с возбужденным электроном (характеризуется избыточной энергией) и фотона, энергетический заряд которого совпадал бы с уровнем заряда орбиты электрона. При выстреле фотоном в атом последний испускает два фотона с равной энергией и в одном направлении. Так было заложено понятие вынужденного излучения (или, по- английски, SER – stimulated emission of radiation), которое используется в работе лазеров (от англ. LASER – light amplification by stimulated emission of radiation, или «усиление света посредством вынужденного излучения»).

– В 1924 году в руки Эйнштейну попала статья Шатьендраната Бозе (1894-1974), физика из Калькутты, в которой говорилось о новом подходе к статистическому описанию света (на иллюстрации – фото индийского ученого, сделанное в 1925 году). Бозе делал акцент на том, что фотоны, в отличие от электронов, могут терять свою идентичность. Эйнштейн предположил, что газ может вести себя точно так же. При понижении температуры до абсолютного нуля атомы лишаются единственной своей отличительной черты – энергии – и переходят в новое состояние материи – состояние конденсата Бозе – Эйнштейна, в котором атомы замедляются, словно объединяясь в один суператом, и квантовые эффекты начинают проявляться на макроскопическом уровне. В 1995 году конденсат Бозе – Эйнштейна был впервые получен в лаборатории.

Ограниченная четкость изображения вещь неизбежная поскольку мы используем - фото 104

Ограниченная четкость изображения – вещь неизбежная, поскольку мы используем волны и частицы для изучения собственно волн и частиц, и одни влияют на другие. Еще хуже то, что не всегда ясно, где пролегает граница между одним явлением и другим, поскольку частица может вести себя как волна и наоборот. Какой бы ни была природа квантовых сущностей, невозможно раз и навсегда определить их как волну или как частицу, потому что в зависимости от обстоятельств они проявляются как одним образом, так и другим.

Согласно законам классической физики, мы можем начертить траекторию электрона, зная его положение в пространстве в определенный момент времени, а также определить его скорость (вектор, указывающий направление движения). Гейзенберг настаивал на том, что в отношении атомов сказать то же самое нельзя:

«Чтобы увидеть орбиту электрона в атоме, возможно, самое очевидное – использовать микроскоп с высочайшим разрешением. Но поскольку образец под линзой микроскопа должен был бы освещаться лучом с крайне малой длиной волны, первый же квант света, достигший электрона и проникший в глаз наблюдателя, тут же выбил бы электрон с его орбиты […]. Поэтому экспериментально можно наблюдать лишь одну точку траектории за раз».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Эйнштейн. Теория относительности. Пространство – это вопрос времени.»

Представляем Вашему вниманию похожие книги на «Эйнштейн. Теория относительности. Пространство – это вопрос времени.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Эйнштейн. Теория относительности. Пространство – это вопрос времени.»

Обсуждение, отзывы о книге «Эйнштейн. Теория относительности. Пространство – это вопрос времени.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x