Несмотря на то что методы анализа, открытые Ньютоном и Лейбницем, были концептуально разными, спор разгорелся все равно. Его можно было бы избежать, если бы Ньютон опубликовал трактаты об анализе, написанные между 1669 и 1672 годами, поскольку Лейбниц, который разработал свою версию анализа в период между 1672 и 1676 годами, почти с самого своего приезда в Лондон в 1673 году контактировал с английскими учеными. Однако в те годы Ньютон и Лейбниц через третьих лиц всего лишь обменялись несколькими письмами, которые сыграли свою роль в последующей дискуссии.
Хотя Ньютон первым открыл и развил анализ, Лейбницу принадлежит первенство публикации. В первой статье 1684 года Лейбниц не упоминает Ньютона, хотя делает это во второй, в 1686 году. Ньютон ссылается на Лейбница при первой же возможности, то есть во время первого издания в 1687 году «Математических начал натуральной философии». Скорее всего, Ньютон стремился заявить о своих притязаниях на первенство в открытии анализа; но поскольку он до сих пор ничего на эту тему не опубликовал, в отличие от Лейбница, и поскольку, за исключением узкой компании, близкой Ньютону, никто не знал о его переписке с Лейбницем, это упоминание восприняли как признание Ньютоном Лейбница независимым изобретателем анализа бесконечно малых.
Начиная с конца 1691 года, четыре года спустя после появления «Математических начал натуральной философии», среди ученых начали звучать первые обвинения в адрес Лейбница. Так, Фатио де Дюилье писал Гюйгенсу: «При представлении господином Лейбницем своего дифференциального анализа сразу бросается в глаза, что это переделка того, что написал господин Ньютон, и, сравнивая, я не смог избежать ясного ощущения, что разница между ними такая же, как между совершенным оригиналом и кустарной копией». В 1695 году Джон Валлис говорил Ньютону, что в Голландии его метод завоевывает все больше поклонников… но под именем дифференциального анализа Лейбница. Валлис в итоге опубликовал в 1699 году, в одном из томов своих математических работ, сборник писем, которые касались изобретения анализа. Это фактически меняло ситуацию, так как появились документы, которые могли подтвердить, что хотя Лейбниц и опубликовал свои результаты раньше Ньютона, первенство все же принадлежит англичанину, который сообщил об этом – правда, частично и завуалированно – и самому Лейбницу. Летом 1699 года Лейбниц написал: «Валлис попросил моего позволения опубликовать мои старые письма. Так как мне нечего бояться, я ответил, что он может опубликовать все, что посчитает нужным». Очень скоро стало понятно, что Лейбниц серьезно ошибался насчет «мне нечего бояться».
«ПО КОГТЯМ УЗНАЕШЬ ЛЬВА»
Конфликту способствовал известный случай, произошедший в те годы. Речь идет о вызове, брошенном в июне 1696 года Иоганном Бернулли, учеником Лейбница. Задача была о брахистохроне: требовалось найти форму кривой, по которой материальная точка под воздействием исключительно силы тяготения быстрее всего скатится из одной заданной точки в другую. В мае 1697 года Лейбниц взялся опубликовать четыре полученных решения: их авторами были сам Лейбниц, маркиз Лопиталь, Якоб Бернулли и его брат, предложивший задачу, Иоганн Бернулли. Но появился еще один ответ анонимного автора, который был опубликован в январе 1697 году в «Философских трудах»; этим анонимным автором, как известно, был Ньютон. Всего 70 слов, которыми ученый объяснял вполне простое решение, оказалось достаточно для того, чтобы Иоганн Бернулли догадался, кто за ним стоит. Он произнес: «Tanquam ex ungue leonem», что в переводе с латыни значит «По когтям узнаешь льва».
НЬЮТОН НАНОСИТ УДАР
Текст Иоганна Бернулли, в котором он ставит задачу о брахистохроне, начинался словами: «Я, Иоганн Бернулли, обращаюсь к самым блестящим математикам мира». Это был призыв, перед которым Ньютон не мог устоять, хотя по прошествии времени он произнес по поводу всей этой истории слова, не лишенные шовинизма: «Мне совсем не приятно, что какие-то иностранцы досаждают мне вопросами по математике». Решение Ньютона было следующим: «Пусть из данной точки А проведена прямая APCZ параллельно горизонтали. Пусть на ней будет описана произвольная циклоида AQP, пересекающая прямую АВ в точке Q, и вторая циклоида ADC, основание и высота которой относятся к основанию и высоте первой как AQ к АВ соответственно. Последняя циклоида будет проходить через точку В, и она будет той кривой, по которой вес силой своей тяжести спустится наиболее быстро из точки А в точку В».
Читать дальше