Переплавляемая заготовка, два или несколько плазматронов, медный водоохлаждаемый кристаллизатор и получаемый в результате переплава слиток размещаются в герметической камере. Плазменные струи каждого плазматрона направлены на ванну жидкого металла, поддерживаемую в кристаллизаторе. Заготовка подается вниз с вращением. Соприкасаясь с плазменными струями, она плавится, и металл каплями стекает в ванну. По мере наплавления слиток с помощью механизма вытягивается из кристаллизатора.
Самая крупная в мире плазменная электросталеплавильная печь мощностью 30 тонн действует с 1977 года на заводе высококачественных сталей во Фрейтале (ГДР). Она разработана учеными и специалистами ГДР и СССР. Новая плавильная установка значительно повышает качество сталей, дает экономию сырья и энергии, не загрязняет окружающую среду.
Плазменная печь оснащена четырьмя плазматронами, три из которых ведут плавку, а четвертый находится в резерве. Специальные механизмы в процессе плавки позволяют менять положение плазматрона, выбирая наиболее выгодное. В новой печи металлолом перерабатывают в качественную сталь. Мощные струи аргонной плазмы, раскаленной до 15–17 тысяч градусов, позволяют каждые 90 минут получать 30 тонн высоколегированных марок стали или сплавов с высоким омическим сопротивлением. В год печь дает 60 тысяч тонн металла. На основе освоения этой установки ведутся работы по дальнейшему совершенствованию плазменных процессов в металлургии, а также по созданию более мощных установок, которые со временем изменят весь облик целой отрасли черной металлургии.
Плазменную печь недаром называют агрегатом будущего. В ней идет процесс, революционизирующий металлургическое производство. Кроме высокого качества металла, большой экономичности, она еще и максимально экологична. Уровень шума при ее работе не превышает 40 децибел, что в два раза ниже санитарной нормы, а все вредные выбросы надежно заблокированы аргонной “подушкой”.
Анализируя достижения электрошлакового, электроннолучевого и других переплавов, приходится отмечать усложнение металлургической технологии. На смену двустадийному процессу (чугун — сталь) пришел трехстадийный: чугун — сталь — готовый металл. Если на современном этапе это оправдывается тем, что стали высокого качества требуются все-таки в ограниченном количестве, то в дальнейшем такой “поблажки” ожидать не приходится. Так называемый “рядовой металл” также нуждается в повышении качества, ибо тут кроются многие возможности совершенствования техники. Однако рассчитывать на то, что вся сталь пройдет через разного рода переплавы, нереально. Задача на будущее очевидна: необходимо создать прямые способы получения металла из руды с помощью плазменного нагрева, использовать непрерывные процессы и полную автоматизацию.
Руду при высоких температурах можно быстро превратить в пар, состоящий из ионизированных атомов, затем их сконденсировать и извлечь элементы из плазменной струи. Таковы основы плазменной металлургии будущего. Она позволит получать материалы с улучшенными и особыми свойствами, интенсифицировать и иногда упростить процессы, сохранить высокие технико-экономические показатели агрегата, несмотря на тенденцию переработки бедного сырья. В результате организации непрерывных автоматизированных процессов с использованием низкотемпературной плазмы можно обеспечить значительный объем производства при минимальных размерах реакционного пространства, сократить площади, занятые оборудованием, уменьшить габариты агрегатов.
При анализе тенденций развития современной металлургии иногда пытаются назвать тот процесс, который станет основным, самым экономичным в металлургии. Но вспомним: история металлургии началась с одного процесса — сыродутного, а затем произошло разделение на две стадии, каждая из которых подвергалась дальнейшему совершенствованию. Появление в прошлом веке сразу трех способов получения литой стали было вызвано разнообразием сырьевых возможностей и различием потребительских требований к металлу. Теперь же эти тенденции только усилились и можно говорить лишь о преимущественном использовании одного процесса для производства металла. Сейчас это доменный и кислородно-конверторный процессы, в дальнейшем, надо ожидать, — плазменные процессы в непрерывных автоматизированных агрегатах.
Читать дальше