Принцип электрошлакового переплава заключается в том, что в качестве исходного материала используется электрод, предварительно выплавленный в электродуговой печи и прокатанный на круглую заготовку. Источником тепла при ЭШП служит шлаковая ванна, нагреваемая проходящим через нее электрическим током.
Переменный ток подводят к переплавляемому электроду и к поддону, установленному в кристаллизаторе. Выделяющееся в шлаковой ванне тепло нагревает ее до 1700° С и выше. Это вызывает оплавление конца электрода, погруженного в шлаковую ванну. Капли жидкого металла проходят через шлак, образуя под шлаковым слоем металлическую ванну.
Процесс прохождения капель металла через шлак, интенсивное перемешивание их с ним и длительное пребывание металла ванны в контакте со шлаком способствуют их активному взаимодействию. Здесь-то и происходит очистка металла от вредных примесей — неметаллических включений и растворенных газов. В нижней части металлической ванны, активно охлаждаемой поддоном и кристаллизатором, постепенно формируется слиток с очень ровной поверхностью. Это связано с образованием на холодной стенке кристаллизатора тонкого слоя твердого шлака — гарнисажа. Внутри этой шлаковой “рубашки” и образуется слиток.
Способ ЭШП разработан в Советском Союзе Институтом электросварки им. Е.О.Патона. Первый лабораторный слиток получен в 1953 году. В мае 1958 года на Запорожском электрометаллургическом заводе “Днепроспецсталь” вступила в строй первая в мире промышленная печь ЭШП. Масса электрошлакового слитка постепенно росла и к 1975 году достигла 160 тонн.
Теперь на многих заводах страны действуют уникальные цехи, выпускающие сотни тысяч тонн электрошлаковых слитков. Построен архисовременный специализированный цех ЭШП на “Азовстали”. Вводится в строй электрошлаковый цех в городе Краматорске с 200-тонной печью ЭШП.
Создатели ЭШП в нашей стране академики Б.Е. Патон и Б.И. Медовар пытаются заглянуть вперед и представить себе, какой будет электрошлаковая технология через 10–15 лет, на пороге XXI века.
Могучим средством оптимизации технологии послужит АСУ технологического процесса ЭШП, которая уже задействована на печах завода кузнечно-прессового оборудования. Все вновь выпускаемые электрошлаковые печи будут оснащать встроенными микропроцессорами, компактной, простой и надежной автоматикой.
В ближайшие 10–15 лет намечается полный отказ от катаных и кованых расходуемых электродов. Опыты, проведенные в СССР и за рубежом, убедительно свидетельствуют о большой эффективности применения электрошлаковой плавки металлизованных окатышей взамен электродуговой. Налицо технические, экономические и даже социальные преимущества новой технологии — имеется в виду существенное снижение шума, уменьшение выбросов, заметное улучшение условий труда металлургов. Успехи дальнейшего развития ЭШП зависят от уровня подготовки инженерных кадров. Выпускников по специальности спецэлектрометаллургии ждет интересная работа.
Электронный луч, используемый многими учеными в качестве незаменимого исследовательского инструмента, начал служить металлургии. Его возможности велики и удивительны. Например, электронная пушка, созданная в Институте электросварки им. Е.О. Патона АН УССР, обладает ювелирным “почерком”. Ее луч, который в три раза тоньше, человеческого волоса, способен на пластине из нержавеющей стали размером с почтовую марку “выгравировать” текст, по объему равный газетной полосе. Буквы настолько малы, что прочитать написанное электронным пером можно только с помощью микроскопа. Новый электронный инструмент может служить для изготовления сильно уменьшенных копий документов, микроскопической обработки и сварки металлов.
Фактический переход от лабораторного применения электронно-лучевого нагрева для плавки и рафинирования металла и применения его в промышленных масштабах осуществился в 1958–1963 годах, когда появились мощные вакуумные насосы и электронно-лучевая пушка. Наибольшее распространение процесс получил в СССР, США, ФРГ, Японии, ГДР. Максимальная величина слитка составляла 18 тонн.
Этот способ применяли в основном для получения чистых тугоплавких металлов. Однако в последние годы все чаще его применяют для выплавки жаропрочных сплавов и специальных сталей для атомной энергетики, ракетной техники, сверхпрочных подшипников.
Особенно большие перспективы открывает электронно-лучевой переплав в повышении качества стали и сплавов на основе железа и никеля. Удается в 3–10 раз в зависимости от марок сталей уменьшить общее количество неметаллических включений. В результате значительно улучшаются многие физико-химические свойства высокопрочных, жаропрочных, нержавеющих, инструментальных сталей и прецизионных сплавов.
Читать дальше