Но что, если улавливать углекислый газ не на выходе с электростанций, а извлекать его непосредственно из воздуха, имитируя деятельность фотосинтетиков? Вот уже на протяжении как минимум двух десятилетий ряд ученых и частных компаний занимаются разработкой «искусственных деревьев», чьи «листья» будут абсорбировать CO 2из воздуха и пропускать через химическую среду с сильным основанием, например щелочью (гидроксидом натрия, NaOH) или полимерной смолой. Убежденный апологет этой технологии физик Клаус Лакнер из Аризонского университета утверждает, что в конечном итоге можно создать «дерево», которое будет поглощать тонну углекислого газа в день, т. е. примерно в 1000 раз больше, чем обычное дерево. Но даже при таком максимальном уровне эффективности потребуется 30 млн искусственных деревьев, чтобы нейтрализовать наши текущие выбросы углерода, достигающие 10 Гт в год, и еще сотни миллионов, чтобы обратить вспять последствия столетней эмиссии или хотя бы вернуться к уровню 1990 г. в 350 ppm, который многие климатологи считают критическим порогом.
По оценкам Американского института физики, себестоимость прямого извлечения CO 2из воздуха с использованием даже самых многообещающих (но еще непроверенных) технологий будет составлять $780 за тонну CO 2— почти в 10 раз больше, чем его улавливание на электростанциях [105] Американское физическое общество, «Прямой захват СО 2 из воздуха с помощью химических веществ», 2011; https://www.aps.org/policy/reports/assessments/
. Кроме того, под «леса» из искусственных деревьев придется отвести значительные по площади участки суши, а собираемый ими углерод будет требовать дальнейшей утилизации — либо закачки в подземные хранилища, либо захоронения в какой-либо твердой форме.
С учетом всех этих сложностей, старый добрый естественный фотосинтез кажется невероятно выгодной сделкой, и не надо ничего изобретать! Почему бы не задействовать эту природную технологию более интенсивно, просто посадив как можно больше деревьев и других растений? Как показывает геологическая летопись, чтобы произошло заметное снижение концентрации СО 2в атмосфере, поглощение углерода посредством фотосинтеза в каждом отдельно взятом году должно значительно превышать его высвобождение в результате разложения растительной массы. (Горькая ирония состоит в том, что причиной наших сегодняшних проблем является как раз неразложившийся в прошлом органический углерод, из которого образовано ископаемое топливо.) Если же углерод, фиксируемый растениями весной и летом, в том же количестве высвобождается осенью и зимой при их разложении, чистый эффект изъятия углерода равняется нулю. Таким образом, самыми эффективными с точки зрения секвестрации углерода являются быстрорастущие деревья с максимально длительным сроком жизни. Хотя они не хранят углерод вечно, они, по крайней мере, выводят его из циркуляции на несколько десятилетий и даже веков.
Но даже такая простая «технология» борьбы с СО 2, как посадка деревьев, проблематична в реализации. Прежде всего очевидно, что есть предел тому, какую часть суши мы можем отвести под леса, поскольку нам нужно выращивать продовольственные культуры (хотя в конце прошлого века на севере США, в частности в Висконсине и Новой Англии, началось частичное возвращение под лесные угодья сельскохозяйственных земель, на которых леса были вырублены в XIX в.). Кроме того, интуитивное предположение, что активно растущие молодые деревья поглощают больше углерода, поэтому имеет смысл вырубать старые леса и засаживать эти территории новыми, оказывается в корне неверным. Последние исследования показали, что деревья многих видов с возрастом улавливают и фиксируют все больше углерода благодаря тому, что их общая листовая поверхность, а также объем стволов и ветвей продолжают все время увеличиваться [106] Stephenson, N. L., et al., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature , 507, 90–93. doi:10.1038/nature12914
. Таким образом, оптимальная стратегия в данном случае — позволить расти старым деревьям и сажать как можно больше новых, но не стоит забывать о том, что деревья имеют конечный срок жизни и в итоге возвращают весь изъятый углерод в атмосферу.
Более продвинутый подход к использованию возможностей фотосинтеза известен под функциональным, но громоздким названием «биоэнергетика с улавливанием и хранением углерода», сокращенно био-УХУ (Bioenergy with carbon capture and storage, BECCS). Идея состоит в том, чтобы использовать биомассу из быстрорастущих фотосинтетиков, таких как прутьевидное просо и культивируемые водоросли, для производства биотоплива, а затем секвестировать выделяющийся при его сжигании углерод. Теоретически эта технология действительно дает отрицательный углеродный выброс и позволяет на длительный срок вывести из обращения органический углерод. В настоящее время уже реализуются небольшие пилотные проекты, но переработка растительной массы в биотопливо сама по себе энергоемкий процесс, а улавливание углекислого газа с использованием биотопливных энергоустановок и его последующее захоронение может оказаться еще дороже, чем на электростанциях, работающих на природном газе или угле [107] Venton, D., 2016. Can bioenergy with carbon capture and storage make animpact? Proceedings of the National Academy of Sciences , 47, 13260–13262. doi:10.1073/pnas.1617583113
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу