Направление спирального поля можно оценить, если предположить, что один конец силовой линии закреплен на Солнце и вращается вместе с ним. Тогда частицы, которые непрерывно испускаются данной областью вращающейся короны, будут двигаться в экваториальной плоскости по спиралям Архимеда. (Это напоминает работу вращающегося поливального устройства). Таким образом, межпланетное магнитное поле приобретает и поперечную компоненту B φ . Можно оценить, что вблизи орбиты Земли угол спирали с радиусом составляет около 45° и радиальная и поперечная компоненты B φ = B r = 1γ.
Рис. 6. Секторная структура межпланетного магнитного поля
Стрелками и знаками обозначено направление межпланетного магнитного поля. Спиралями Архимеда отделены воображаемые границы секторов
Первые измерения магнитных полей за пределами магнитосферы Земли были проведены на спутнике «Пионер-1» в октябре 1958 г. Они позволили установить существование и положение области перехода от внешней части геомагнитного поля к межпланетному пространству. Эти результаты были подтверждены измерениями на других ИСЗ. Экспериментально было установлено, что имеются значительные нерегулярности, наложенные на спиральное межпланетное поле.
Спутниковые измерения межпланетного магнитного поля выявили тесную связь между величиной магнитного поля, перпендикулярного оси вращения аппарата (поперечной составляющей В ┴ ), и значением магнитного индекса К или А .
Перед началом и в период геомагнитных бурь величина В ┴ увеличивается на порядок и приобретает более нерегулярный характер, чем в спокойные периоды.
Это объясняется тем, что плазма из возмущенных областей на Солнце может уносить в межпланетное пространство более интенсивные и более нерегулярные поля. А это приводит к появлению нерегулярностей в спокойном межпланетном поле, что подтверждают измерения на спутниках.
Обнаружена также прямая корреляция между изменениями межпланетного поля по данным спутников и солнечной активностью. По этим данным была оценена средняя скорость распространения возмущения, равная ~1000 км/с.
Вектор межпланетного магнитного поля имеет радиальную составляющую В r, направленную или от Солнца (знак +), или к Солнцу (знак —). Межпланетное пространство разделено на чередующиеся спиральные секторы, в каждом из которых радиальная компонента направлена либо наружу, либо вовнутрь. На рис. 6 показана межпланетная секторная структура, наблюдаемая на расстоянии с Земли в течение двух с половиной периодов вращения Солнца с 1 декабря 1964 г.
В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются. Наблюдения с помощью ракет показывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Скорость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с магнитосферными возмущениями. Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней.
Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые магнитные карты (1702 г.). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.
Рис. 7. Силовые линии геомагнитного дипольного поля
Магнитные полюсы наклонения П си П ю. Географические полюсы С и Ю. Магнитные меридианы идут от одного полюса к другому
Рис. 8. Напряженность геомагнитного поля B, ее ортогональные компоненты X, Y и Z и элементы Н, D и I
Читать дальше