Теперь, когда температура опустилась ниже 1 МэВ, могут образоваться ядра, поскольку их больше не будут мгновенно разрывать множество высокоэнергетических фотонов, кишащих вокруг. К этому моменту, как уже было сказано, все позитроны аннигилировали, так что нейтрино (и антинейтрино) больше нечего делать и они превращаются в реликтовое тепловое облако подобно фотонному фоновому излучению, которое появится значительно позже. Сегодня это облако формирует нейтринное реликтовое излучение (НРИ) температурой 1,95 К. Есть небольшая надежда в обозримом будущем зарегистрировать его непосредственно.
Теперь давайте посмотрим, как формировались более легкие ядра. Протон и нейтрон могут столкнуться с образованием дейтрона и фотона:
p + n → Н 2+ γ.
Вначале слабо связанные дейтроны расщеплялись в ходе обратной реакции. Но когда температура снизилась в достаточной мере, дейтроны стали контактировать достаточно долго для того, чтобы могли сформироваться нейтрон и ядро Не 3:
Н 2+ Н 2→ Не 3+ n или тритон и протон:
Н 2+ Н 2→ Н 3+ p.
He 4формировался следующим путем:
Н 2+ Н 3→ Не 4+ n или
Н 2+ Не 3→ Не 4+ р.
Li 7возник в ходе такой реакции:
H 3+ He 4→ Li 7+ γ,
a Be 7— этой:
Не 3+ Не 4→ Be 7+ γ.
И так далее. Это не полный список реакций, однако он должен дать общее представление о процессе.
Заметьте, что во всех этих реакциях сохраняется как атомный номер, соответствующий символу элемента, так и нуклонное число. Первое объясняется законом сохранения заряда. Второе — частный случай более общего закона сохранения барионного числа, о котором мы поговорим позднее.
Изменение массовой доли различных легких элементов относительно протонов с течением времени показано на рис. 10.3. Иллюстрация взята из онлайн-учебника Эдварда Райта по космологии {200} 200 Wright Edward L. Big Bang Nucleosynthesis. 2012 // http://www.astro.ucla. edu/~wright/BBNS.html (accessed February 7,2013).
и основана на работе Берлса, Ноллетта и Тернера {201} 201 Buries S., Nollett K. M. and Turner M. S. Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space. 1999 // http://arxiv.org/pdf/astro-ph/9903300vl.pdf (accessed February 7, 2013).
. Как мы видим, максимум их продукции приходится примерно на 200-ю с, а распространенность большинства частиц снижается примерно через 1000 с. Li 6появляется совсем ненадолго, а нейтроны быстро исчезают по мере своего распада или формирования атомных ядер. Только Не 4образуется в значимом количестве.
Рис. 10.3. Массовая доля нуклонов и ядер по отношению к протонам в ранней Вселенной в зависимости от времени. Иллюстрация предоставлена Эдвардом Л. Райтом
Затем нуклеосинтез прекратился из-за отсутствия стабильных ядер, состоящих из пяти или восьми нуклонов. Как мы уже знаем, более тяжелые ядра синтезируются позднее, в условиях температуры и давления, характерных для коллапсирующих звезд.
Общепринятая модель первичного нуклеосинтеза, используемая большинством специалистов по ядерной космологии, опирается на один-единственный параметр η — отношение числа барионов к числу фотонов, имеющее порядок 10 -9. Барион — родовое понятие физики частиц, обозначающее определенный класс частиц, включающий протоны и нейтроны (см. главу 11). На этом этапе жизни ранней Вселенной протоны, нейтроны и ядра, сформировавшиеся из них, были единственными существующими барионами.
Распространенность Не 4(около 25% всей массы протонов) слабо зависит от условий, существовавших в ранней Вселенной. Вот почему даже самые первые приблизительные оценки, сделанные тогда, когда об этих условиях знали еще крайне мало, оказались близкими к истине. В то же время оставшиеся легкие ядра, в особенности дейтроны (H 2), очень чувствительны к массовой плотности барионов ρ B которая на тот момент равнялась просто нуклонной плотности.
Барионная плотность обычно выражается соотношением Ω B= ρ B/ρ c, где ρ c— это критическая плотность — средняя плотность Вселенной, когда положительная кинетическая энергия и отрицательная гравитационная энергия точно уравновешивали друг друга. По самым последним данным, ρ c= 9,467∙10 –30г/см 3. В модели Фридмана, описанной в главе 8, это ситуация, при которой коэффициент кривизны k = 0 и Вселенная представляет собой евклидово пространство, хотя, как мы вскоре увидим, k = ±1 тоже не исключается.
На рис. 10.4 приведена теоретическая и экспериментально измеренная распространенность элементов в порядке их доли относительно числа протонов. Полосами показаны экспериментальные количества, при этом ширина полос указывает на погрешность измерений {202} 202 Рисунок взят из Cosmological Tutorial Неда Райта в измененном виде.
.
Читать дальше