Может возникнуть вопрос, как это значение согласуется с утверждением, которое я высказал в главе 6, что никакое расстояние меньше планковской длины нельзя измерить. Ответ имеет отношение к разнице между теорией и экспериментом, которую я раз за разом подчеркиваю в этой книге. Реально было измерено вовсе не расстояние короче планковской длины. Тем не менее измеренное значение было включено в теоретическую модель, в результате предсказавшую ограничение на размер пузырьков, которые должны быть значительно меньше планковской длины. Но само это число существует только в рамках модели, а не в прямом наблюдении.
Теперь давайте поставим вопрос, что могло существовать по отрицательную сторону нашей временной оси, то есть до t = О в нашем прошлом. Откуда же взялась эта первичная сфера абсолютного хаоса? Хотя у нас нет никакой эмпирической информации о том, что могло происходить до планковского времени, мы все еще можем применить наши наиболее глубокие теоретические знания, то есть общую теорию относительности и квантовую теорию, которые были основаны на эмпирических свидетельствах из более позднего времени.
В книге и статье 2006 года я описал сценарий, который обосновывает естественное происхождение нашей Вселенной и вытекает из общепризнанной физики и космологии {330} 330 Stenger Victor J. The Comprehensible Cosmos: Where Do the Laws of Physics Come From? — Amherst, NY: Prometheus Books, 2006. — P. 312–319; A Scenario for the Natural Origin of the Universe // Philo, 9,2006. — № 2:93–102.
. Он строится на модели, предложенной в 1982 году Дэвидом Аткацем и Хайнцем Пейджелсом {331} 331 Atkatz David and Pagels Heinz. Origin of the Universe as a Quantum Tunneling Event // Physical Review Letters D, 25,1982:2065–2073.
. Я выработал этот сценарий чисто математически на уровне, доступном для студента-физика, в значительной степени полагаясь на очень приятное учебное пособие, опубликованное Аткацем в 1994 году, «Квантовая космология для пешеходов» {332} 332 Atkatz David. Quantum Cosmology for Pedestrians // American Journal of Physics, 62,1994. — № 7: 619–627.
. Здесь я только кратко опишу порядок действий.
В 1982 году Аткац и Пейджелс показали, каким образом наша Вселенная могла появиться благодаря квантовому туннелированию. Этот механизм был предложен Виленкиным в 1982 году {333} 333 Vilenkin Alexander. Creation of Universes from Nothing // Physics Letters B, 117, 1982. — №1:25–28.
, а также Джеймсом Хартлом и Стивеном Хокингом в 1983 году {334} 334 Hartle James B. and Hawking Stephen W. Wave Function of the Universe // Physical Review D, 28,1983: 2960–2975.
.
Начнем с уравнений Фридмана для пустой, гомогенной, изотропной Вселенной с положительной кривизной, то есть с параметром кривизны k = +1. Хотя наша Вселенная очень близка к плоской, из этого не обязательно следует, что глобальный параметр кривизны k = 0; она может иметь k = +1 или k = -1 и все еще быть очень, очень плоской после инфляции. Аткац и Пейджелс показали, что туннелирование работает только при k = +1.
Имея в распоряжении это уравнение, мы следуем стандартным правилам, согласно которым нужно перейти от классического уравнения к квантово-механическому, заменив действительные числа математическими операторами [25] Для тех, кто знаком с дифференциальным исчислением в частных производных: в волновой механике Шрёдингера x-компонента импульса px заменяется дифференциалом, который не коммутирует с x, из чего вытекает принцип неопределенности. В квантовой механике Гейзенберга наблюдаемые объекты представлены в виде матриц. В квантовой механике Дирака наблюдаемые объекты представлены в виде операторов в линейном векторном пространстве.
. Результат выглядит неожиданно просто. Вы получаете квантово-механическое, не зависящее от времени уравнение Шрёдингера для нерелятивистской частицы с массой, равной половине планковскои массы, и нулевой полной энергией, которое имеет единственное измерение, представляющее собой космологический масштабный коэффициент Вселенной, который мы можем принять за радиус Вселенной. Следует отметить, что это просто математическое тождество и из него не следует, что такая частица существует.
Выведенное уравнение — это упрощенная форма уравнения Уилера — Девитта, решение которого гордо именуется волновой функцией Вселенной {335} 335 Dewitt Bryce S. Quantum Theory of Gravity. I. The Canonical Theory // Physical Review, 160,1967:1113–1148.
. При стандартном квантово-механическом подходе к интерпретации волновых функций квадрат амплитуды волновой функции Вселенной определяет вероятность нахождения конкретной Вселенной среди ансамбля похожих вселенных.
Итоговый сценарий проиллюстрирован схемой пространства-времени на рис. 15.2. Время t изображено вертикально, а два из трех измерений пространства, x и y, показаны в перспективе. В каждый момент времени расширяющаяся сферическая Вселенная спроецирована на окружность, перпендикулярную временной оси. Она развивается из сферы планковских размеров, расположенной в начальной точке, t= 0.
Читать дальше