Как мы уже знаем: измерение расстояний всегда было серьезным испытанием для астрономов. Они разработали так называемую лестницу космических расстояний. Она представляет собой набор методов, каждый из которых применяется до некоторого предельного расстояния, после чего вступает в силу следующий. Методы в достаточной степени перекрывают друг друга, так что с помощью одного из них можно уточнить показания, полученные с помощью другого.
Не думаю, что стоит подробнее описывать эти методы. Я уже рассказал вам о способе определения расстояний по параллаксу, который используется для звезд, расположенных близко — на расстоянии до сотни световых лет, и об определении расстояний по цефеидам, что работает для галактик, расположенных на расстоянии до 13 млн. световых лет от Земли. В 1977 году Талли в соавторстве с Ричардом Фишером опубликовал новый метод определения расстояний до спиральных галактик, который заключается в определении зависимости между внутренней светимостью галактики и скоростью ее вращения {256} 256 Tully R. Brent and Fisher J. Richard. A New Method of Determining Distances to Galaxies //Astronomy and Astrophysics, 54,1977: 661–673.
. Как и в случае с другими методами, вы определяете расстояние, измеряя наблюдаемую на Земле светимость, и предполагаете, что она падает до наблюдаемого значения пропорционально квадрату расстояния до объекта. С помощью этого и других методов Талли и Фишер создали атлас галактик, названных ими близкими {257} 257 Tully R. Brent and Fisher J. Richard. Nearby Galaxies Atlas. — Cambridge; New York: Cambridge University Press, 1987.
.
Но, по сути, красное смещение остается самым точным методом измерения, доступным астрономам, и с помощью закона Хаббла все еще можно получить приближенные значения расстояний. Новейший период в истории астрономии ознаменовался масштабными исследованиями красных смещений галактик, благодаря которым была обнаружена впечатляющая паутинообразная структура видимой части Вселенной.
Первое масштабное исследование красных смещений началось в Гарвард-Смитсоновском центре астрофизики (Harvard-Smithsonian Center for Astrophysics, CfA) в 1977 году и завершилось в 1982-м. Еще одно такое исследование проводилось в CfA с 1985 по 1995 год. На основании этих данных Маргарет Геллер и Джон Хукра в 1989 году открыли нить из галактик, красные смещения которых свидетельствовали о том, что она находится на расстоянии примерно 200 млн. световых лет, ее длина составляет 500 млн. световых лет, ширина — 300 млн. световых лет, а толщина — 16 млн. световых лет. Эту структуру назвали Великой стеной CfA2. {258} 258 Geller Margaret J. and Huchra John P. Mapping the Universe // Science, 246, 1989. — №4932: 897–903.
Как мы увидим в следующей главе, с 2000 года проводилось и проводится огромное количество масштабных исследований красных смещений галактик.
В сущности, число галактик видимой Вселенной составляет от 100 млрд. до, возможно, целого триллиона. Астрономы объединяют эти галактики в группы, скопления, сверхскопления, листы, нити и стены. Их разделяют так называемые войды диаметром от 30 до 500 млн. световых лет, в которых находится очень мало галактик. В 2013 году Брент Талли с коллегами создали достойное внимания видео, в котором наглядно показана эта структура {259} 259 Courtois Hélene et al. Cosmography of the Local Universe // http://irfu.cea.fr/ cosmography (accessed December 18,2013).
.
Тем не менее необъятность, красота и многокомпонентность структуры, которую мы наблюдаем невооруженным глазом и при помощи телескопов, создают ложное впечатление, что космос очень сложно организован, а значит, является результатом в высшей степени замысловатого плана. На самом деле Вселенная в целом довольно проста и организована по большей части случайным образом. Из 99,5% невидимой и не имеющей четкой организации массы Вселенной 69% темной энергии не входят ни в какие структуры, а 26% темной материи не определены столь точно, как видимые объекты, которые она окружает. Более того, численно во Вселенной преобладают фотоны и нейтрино, количество которых в миллиард раз больше, чем атомов. При этом примерно одна из 100 000 этих частиц движется совершенно случайным образом. Наша Вселенная отнюдь не похожа на проект высшего бесконечно разумного существа, скорее она выглядит как сумма вероятностей.
Вначале считалось, что инфляционная модель только усугубила проблему структуры. В конце концов, одним из триумфов инфляционной модели стало объяснение необычайной однородности реликтового излучения. Тогда как же объяснить очевидную неоднородность окружающей нас видимой материи — галактик, звезд, планет, Скалистых гор?
Читать дальше