Для Солнца максимум кривой распределения энергии по спектру лежит в области желтых лучей. И действительно, удаленное от Земли на расстояние звезд наше Солнце казалось бы желтенькой звездочкой. Желтый цвет Солнца обычно не заметен только из-за ослепительной яркости дневного светила.
В области инфракрасных лучей кривая распределения энергии по спектру постепенно приближается к горизонтальной оси, теоретически говоря, нигде ее не пересекая. Это значит, что всякое нагретое тело в какой-то степени излучает и радиоволны. Договоримся излучение радиоволн, вызванное нагретостью тела, называть тепловым радиоизлучением.
Как видите, радиоволны далеко не всегда имеют Искусственное происхождение. Скорее наоборот — естественных радиостанций несравненно больше, чем тех, которые созданы руками человека. Строго говоря, любое тело может рассматриваться как естественная радиостанция, пусть ничтожной мощности.
Вам, конечно, случалось наблюдать досадные помехи на экране телевизора. Где-то рядом проезжает троллейбус или автобус, и сразу изображение портится — по экрану бегут какие-то белые полоски. И в этом случае виновник — естественные радиоволны. Их породили искровые разряды на концах токоприемников троллейбуса или в щетках генератора автомашины. «Непрошенные» радиоволны вмешались в передачу, испортили настройку телевизора и вызвали помехи.
Каждая электрическая искра — это естественная «радиостанция».
Электрические разряды всегда порождают радиоволны. Как известно, первый радиоприемник А. С. Попова был «грозоотметчиком» — он улавливал радиоволны, порождаемые молнией.
Есть, однако, существенное отличие радиоволн, излучаемых электрической искрой и радиоизлучением, например, нагретого утюга.
Радиоизлучение искры вызвано не только нагретостью раскаленного воздуха, но и другими, более сложными процессами. В таких случаях говорят о нетепловом радиоизлучении. Как мы увидим в дальнейшем, нетепловое радиоизлучение может возникнуть, например, при торможении сверхбыстрых электронов под действием магнитных сил.
Казалось бы, обилие всевозможных радиоизлучений позволяет изучать Вселенную в любом диапазоне радиоволн. Но, к сожалению, этому препятствует атмосфера.
Трудно поверить, что воздух почти непрозрачен, что до наших глаз доходит лишь ничтожная доля всех излучений, существующих в природе.
Взгляните на рисунок 38. Он иллюстрирует прозрачность земной атмосферы для электромагнитных волн различных длин. Гладкая горизонтальная часть кривой, совпадающая с горизонтальной осью графика, отмечает те излучения, для которых земная атмосфера совершенно непрозрачна. Два «горба» кривой, один узкий, другой более широкий, соответствуют двум «окнам прозрачности» в земной атмосфере.
Левое из них лежит в основном в области видимых лучей — от ультрафиолетовых до инфракрасных. К сожалению, атмосфера Земли совершенно непрозрачна для лучей, длина волны которых меньше 290 миллимикрон. Между тем в далеких ультрафиолетовых областях спектра расположены спектральные линии многих химических элементов. Мы их не видим, и поэтому наши сведения о химическом составе небесных тел далеко не полны.
Рис. 38. Прозрачность земной атмосферы.
В последнее время астрономы пытаются вырваться за границы воздушной оболочки Земли и увидеть космос, так сказать, в «чистом виде». И это им удается. Высотные ракеты и воздушные шары выносят спектрографы и другие приборы в верхние, весьма разреженные слои атмосферы, и там автоматически фотографируется спектр Солнца.
Начато изучение этим способом и других астрономических объектов.
Другой край «оптического окна» атмосферы упирается в область спектра с длиной волны около микрона. Инфракрасные лучи с большей длиной волны сильно поглощаются главным образом водяными парами земной атмосферы.
Много тысячелетий астрономы изучали Вселенную только через одно узкое «оптическое окно» атмосферы.
Они не подозревали, что есть еще другое «окно», гораздо более широкое. Оно лежит в области радиоволн.
Левый край «радиоокна» отмечен ультракороткими радиоволнами длиной 1,25 см, правый край — радиоволнами длиной около 30 м.
Радиоволны, длина которых меньше 1,25 см (кроме волн с длиной около 8 мм), поглощаются молекулами кислорода и водяных паров. От них есть непрерывный переход к тем электромагнитным волнам, которые мы называем инфракрасными.
Читать дальше