Хотя крылатый планер войдет в атмосферу «плашмя», сильнее нагреются передние кромки носовой части и крыльев аппарата, потому что именно они будут обтекаться наиболее нагретым потоком воздуха. Поэтому особое внимание придется уделять их защите. Считается целесообразным эти части планера покрывать порошкообразными веществами, способными при высокой температуре переходить в газообразное состояние и отводить при испарении излишнее тепло. Об этом более подробно будет рассказано несколько ниже.
В настоящее время металлурги еще не выпускают в больших количествах сплавов, способных сохранять свои качества при температуре в 165 °C. Поэтому приходится работать и над проблемами охлаждения космических аппаратов. В частности, предлагается [9] все секции теплоизоляции делать полыми и наполнять их тканью, обильно смоченной водой. При такой системе охлаждения не потребуется ни насосов, ни труб. Фитилеподобный материал предотвратит перемещение воды в секциях. При нагревании обшивки вода в секциях будет превращаться в пар и отводиться из задней части летательного аппарата, чтобы избежать чрезмерного давления внутри конструкции.
После того как планер снизится в тропосферу и погасит скорость, он вновь раскроет свои треугольные крылья во всю ширь и начнет заходить на посадку, как обычный самолет.
Надувной космический аппарат
Возьмите металлический шарик весом в 100 г и выточите шар точно такого же веса из дерева. Ясно, что деревянный шар будет больше металлического.
Теперь, сильно размахнувшись, бросьте шарики один за другим с одинаковой силой. Каждый из нас знает, что металлический шар улетит дальше, а деревянный из-за большего сопротивления воздуха быстро снизит свою скорость и упадет ближе.
При разработке проекта надувного космического аппарата используется именно эта зависимость сопротивления от объема, приходящегося на единицу массы. При выводе аппарата на орбиту и сообщении ему космической скорости выгодно, чтобы его объем был минимальным. Другое дело, когда надо погасить скорость. Чтобы аппарат быстро затормозился в воздухе, надо увеличить его размеры.
Летательный аппарат, имеющий экипаж два человека, при входе в атмосферу должен представлять собой треугольник, размер основания которого около 23 м и высота 40 м. При этом нагрузка на крыло не превысит 4 кг на квадратный метр [10]. Это очень небольшая величина, если учесть, что нагрузка на крыло у самолетов иногда превышает 100 кг на квадратный метр.
По мере уменьшения высоты давление встречного потока будет расти. Чтобы сохранить жесткость конструкции, придется постепенно увеличивать внутреннее давление в аппарате, подавая сжатый воздух из баллонов. С высоты 60 км надувной аппарат будет снижаться по спирали, причем скорость при спуске не превысит 100 м/сек.
Возвращение из космоса на таком аппарате кажется очень простым. Однако построить надувной аппарат будет нелегко. Основная трудность состоит в том, что во время гашения скорости поверхность аппарата может разогреться до температуры выше 80 °C, при которой любой известный эластичный материал сгорает.
В последние годы специалисты ряда стран пытаются создать углеродисто-металлический упругий материал, способный выдерживать высокий нагрев. Возможно, это будет проволочная ткань из никелевого сплава, покрытая каучукоподобным материалом.
Даже при поверхностном ознакомлении с устройством металлических планеров и надувных аппаратов становится ясно, какие сложные проблемы предстоит решить ученым, чтобы гарантировать будущим космонавтам благополучное возвращение на Землю.
Первый космический полет человек совершил, облетев родную планету по эллиптической орбите. Орбита может быть и круговой. Являются ли крылатый планер и надувной космический аппарат единственными аппаратами, способными возвратить человека из космоса?
Возвратиться с эллиптической или круговой орбиты 1 на земную поверхность можно и при помощи так называемой баллистической капсулы.
Рис. 5.Баллистическая капсула:
1 — стопор тормозных парашютов; 2 и 3 — корпус капсулы;
4 — тормозные парашюты; 5 и 8 — теплозащитная плита;
6 — тормозные ракеты; 7 — приборы
В центре капсулы согласно проекту [10] располагается металлическая кабина для космонавта похожая на большую телевизионную трубку. В утолщенной части капсулы предусмотрен контейнер для тормозных ракет, а в противоположном носовом отсеке разместятся парашюты (рис. 5).
Читать дальше