Классическая физика XIX века, как известно, рассматривала время как нечто абсолютное, единое для всей Вселенной, не зависящее от материи.
А. Эйнштейн показал, что никакого абсолютного времени не существует. Течение времени зависит от положения и движения наблюдателя, а также от воздействия гравитационных полей. В частности, оказалось, что в сильном гравитационном поле течение времени существенно замедляется. Например, как мы уже отмечали в предыдущей главе, на границе черной дыры, где сила тяготения бесконечно велика, время вообще останавливается!
Возможно также, что время квантуется, подобно некоторым другим физическим величинам, т. е. существуют минимальные промежутки времени, короче которых в природе уже нет.
Словом, вопросов, связанных с природой времени, более чем достаточно. Их изучение — одна из увлекательнейших проблем современного естествознания.
Нас прежде всего будет интересовать космологическая «стрела времени», связанная с ходом эволюционных событий во Вселенной. Как они развертывались во времени, как одно состояние материи сменялось другим? Изучение этой последовательности событий — центральная задача астрофизики наших дней. Ведь понять современное состояние Вселенной невозможно без изучения тех предшествующих состояний, которые к нему привели. А без понимания современного состояния нельзя предвидеть состояния будущие.
Но раскрыть связь прошлого, настоящего и будущего можно лишь на основе глубокого изучения происходящих в мире физических процессов, взаимосвязи и взаимозависимости различных физических явлений.
Изучение закономерностей эволюции материи во Вселенной — не только одна из важнейших, но в то же время одна из труднейших проблем современного естествознания. Интенсивные исследования в этой области, развернувшиеся во второй половине XX в., привели ученых к мысли, что для решения этой проблемы мало исследовать закономерности одних лишь космических явлений. Необходимо выяснить связь этих явлений с микропроцессами, с миром элементарных частиц.
Одним из основных положений материалистической диалектики является представление о всеобщей взаимосвязи и взаимозависимости явлений природы.
Развитие физики не раз убедительно подтверждало плодотворность этой идеи. Так, например, из знаменитых уравнений, выведенных Дж. Максвеллом в конце прошлого века, вытекало, что казавшиеся в то время совершенно разнородными электричество, магнетизм и свет на самом деле представляют собой различные проявления одних и тех же фундаментальных законов.
Создать единую теорию, которая объединила бы электромагнитные взаимодействия и гравитацию, пытался еще.
А. Эйнштейн. Однако Эйнштейну были тогда неизвестны сильные и слабые взаимодействия, к тому же он принципиально отвергал квантовую механику. Поэтому его попытки к успеху не привели.
Однако в истории науки нередко складываются парадоксальные ситуации. К их числу можно отнести создание так называемой квантовой теории поля, которая представляет собой синтез специальной теории относительности, гениально разработанной Эйнштейном, и той самой квантовой механики, которую полностью он так и не принял до последних дней своей жизни.
На основе квантовой теории поля, в свою очередь, была разработана квантовая электродинамика, описывающая взаимодействие между электронами и фотонами и с очень большой степенью точности подтвержденная экспериментально.
Согласно этой теории, электромагнитные взаимодействия, т. е. взаимодействия между заряженными частицами, например, между электронами и атомными ядрами, обеспечиваются благодаря тому, что эти частицы обмениваются фотонами.
В последние годы аналогичная теория была создана и для сильных взаимодействий. Она получила наименование квантовой хромодинамики. В основе этой теории лежит представление о том, что составные части атомных ядер — нуклоны, т.,е. протоны и нейтроны, состоят из особых фундаментальных частиц — кварков, обладающих дробным электрическим зарядом.
Кварки как теоретические объекты стали рассматриваться физиками, начиная с 1964 г. На первых порах в реальности существования кварков заставляла сомневаться дробность их электрического заряда. Однако в последние годы были получены экспериментальные данные, которые, судя по всему, говорят в пользу того, что кварки действительно обладают дробными зарядами.
Читать дальше