При оценке вероятности столкновения естественных космических тел друг с другом или искусственных космических аппаратов с естественными телами важнейшую роль играет понятие плоскости цели. Плоскость цели — это плоскость, проходящая через центр планеты-мишени перпендикулярно к вектору невозмущенной скорости тела-снаряда относительно планеты-мишени. Когда астероид имеет тесное сближение с большой планетой, его гелиоцентрическая орбита начинает постепенно меняться под действием тяготения планеты. Внутри сферы действия планеты траектория астероида относительно планеты очень близка к гиперболе (рис. 7.1) (напомним, что сферой действия планеты называется область пространства, в которой отношение возмущающего ускорения, сообщаемого телу планетой, к ускорению, сообщаемому телу Солнцем, превосходит отношение возмущающего ускорения, сообщаемого телу Солнцем, к ускорению, сообщаемому телу планетой; приближенное значение радиуса сферы действия Земли равно 0,0062 а.е., или 930 000 км).
Скорость астероида относительно Земли на входе в сферу действия на разности гелиоцентрических скоростей астероида и Земли. Это так называемая скорость тела относительно Земли на бесконечности (невозмущенная скорость тела относительно Земли). По направлению она близка к асимптоте гиперболы, описываемой телом в сфере действия планеты (рис. 7.1).
Рис. 7.1. Траектория движения астероида относительно Земли в пределах ее сферы действия
Обогнув Землю (как говорят, совершив гравитационный маневр), на выходе из сферы действия астероид имеет ту же самую по величине относительную скорость
, но ее направление изменяется на угол γ. Гелиоцентрическая скорость тела на выходе из сферы действия в результате поворота вектора скорости также меняется.
Из определения плоскости цели следует, что на рис. 7.1 штриховая прямая, проведенная перпендикулярно асимптоте гиперболы через центр Земли, есть след от пересечения плоскости цели с плоскостью орбиты тела относительно Земли. Отрезок этой прямой от центра Земли до асимптоты обозначен как b. Его называют прицельным расстоянием .
Как видно из рисунка, прицельное расстояние по величине превышает минимальное расстояние от гиперболы до центра Земли q. Эти две величины связаны соотношением
где v ∞есть параболическая скорость относительно Земли:
Здесь G — гравитационная постоянная, M ⊕ — масса Земли, r ⊕ — ее экваториальный радиус. Если в формулу (7.9) подставить q, равное r ⊕, то b будет равно прицельному расстоянию, при котором траектория астероида коснется поверхности Земли. Соответствующее значение прицельного расстояния называется радиусом захвата . При меньших значениях прицельного расстояния астероид обязательно столкнется с Землей. В зависимости от соотношения
и v ∞радиус захвата может существенно превышать геометрический радиус Земли. При решении вопроса о реальности столкновения следует в некоторых случаях использовать не радиус Земли, а ее радиус захвата.
Рассмотрение процесса сближения космических тел с Землей облегчается при использовании специально выбранной системы координат. Столкновения могут иметь место только в малой окрестности минимального расстояния между орбитами. В этой окрестности орбиты Земли и тела могут рассматриваться как отрезки двух прямых, скрещивающихся в пространстве (в частном случае — пересекающихся). Кратчайшим расстоянием между ними является отрезок прямой, перпендикулярный к обеим скрещивающимся прямым.
При выборе системы координат ее начало помещают в центр Земли. Плоскость цели проводят через центр Земли перпендикулярно к вектору геоцентрической скорости астероида
. Отметим особо два момента. Первый момент: отрезок кратчайшего расстояния между двумя орбитами EA лежит в плоскости цели (рис. 7.2). Второй момент: в малой окрестности кратчайшего расстояния между орбитами, где орбиты могут рассматриваться как отрезки прямых, движение обоих тел происходит в параллельных плоскостях.
Читать дальше
Конец ознакомительного отрывка
Купить книгу