Борис Шустов - Астероидно-кометная опасность - вчера, сегодня, завтра

Здесь есть возможность читать онлайн «Борис Шустов - Астероидно-кометная опасность - вчера, сегодня, завтра» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Физматлит, Жанр: sci_cosmos, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Астероидно-кометная опасность: вчера, сегодня, завтра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Астероидно-кометная опасность: вчера, сегодня, завтра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.
Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.

Астероидно-кометная опасность: вчера, сегодня, завтра — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Астероидно-кометная опасность: вчера, сегодня, завтра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
где под x iследует понимать элемент E i px i плотность вероятности - фото 130

где под x iследует понимать элемент E i, p(x i) — плотность вероятности распределения ошибок соответствующего элемента, σ i — корень квадратный из дисперсии ошибок (среднеквадратичная ошибка i-го элемента).

Предположим ради простоты изложения, что случайные ошибки элементов E iи E jпопарно независимы, т. е. вероятность попадания ошибки элемента E iв некоторый интервал не зависит от ошибки элемента E j. В этом случае ошибки всех элементов являются независимыми в совокупности. Плотность вероятности одновременного попадания шести элементов в достаточно малую окрестность точки (E 1…, E 6) в этом случае выражается как произведение плотностей вероятностей распределения ошибок отдельных элементов:

p(E 1…, E 6) = p 1(E 1)p 2(E 2)… p 6(E 6).

Каждый сомножитель в правой части последней формулы определяется формулой типа (7.5). Из этого вытекает, что плотность вероятности в точке r в случае шестимерного нормального распределения при сделанном предположении определяется формулой

Указанная плотность вероятности остается неизменной во всех точках - фото 131

Указанная плотность вероятности остается неизменной во всех точках пространства, где

При любом положительном значении постоянной это выражение представляет собой - фото 132

При любом положительном значении постоянной это выражение представляет собой уравнение эллипсоида в осях, совпадающих по направлению с главными осями эллипсоида и имеющих начало в точке (x 10, x 20, x 30…, x 60) шестимерного пространства. Если представить, что в шестимерном пространстве элементов по осям прямоугольной системы координат с началом в точке, отвечающей номинальной орбите, отложены величины σ iи представить себе шестимерный эллипсоид с полуосями σ i, то плотность вероятности на таком эллипсоиде будет всюду одинаковой. То же самое будет справедливо и для любого другого подобного и подобным образом расположенного эллипсоида. Такие эллипсоиды называются эллипсоидами равных плотностей вероятностей.

По аналогии с одномерным случаем можно заключить, что вероятность попадания точки внутрь некоторого эллипсоида равна интегралу

где интегрирование распространяется на все пространство ограниченное - фото 133

где интегрирование распространяется на все пространство, ограниченное эллипсоидом. Если полуоси эллипсоида неограниченно увеличиваются, то интеграл по всему пространству равен единице. Если представить эллипсоид с полуосями, равными 3σ i, то вероятность попадания точки в область пространства, ограниченную этим эллипсоидом, близка к единице (0,9973 6). Такой эллипсоид будем называть доверительным .

Выше предполагалось, что ошибки элементов независимы. На самом деле они корреляционно связаны. Отражением этих связей между ошибками отдельных элементов, найденных по методу МНК, являются величины недиагональных элементов обратной матрицы Q -1, которую называют корреляционной матрицей решения или матрицей ковариаций. Корреляционные связи могут проявляться по-разному. Примером двух элементов, находящихся в жесткой корреляционной зависимости, являются долгота узла и угловое расстояние перигелия от узла при малом наклоне орбиты. Ошибки этих величин близки по величине и противоположны по знаку.

Сделанное выше допущение о независимости случайных ошибок элементов эквивалентно допущению, что все недиагональные элементы матрицы ковариаций равны нулю. В том случае, если это допущение неверно, плотность вероятности многомерного нормального распределения будет иметь более сложный вид по сравнению с (7.7). В показателе экспоненты будет присутствовать сумма не только квадратов, но и смешанных членов вида (x i — x i0)(x j — x j0) с коэффициентами, зависящими от недиагональных элементов матрицы ковариаций (коэффициентов корреляции). Приравнивание суммы в показателе экспоненты к положительной постоянной дает уравнение эллипсоида равной плотности вероятности, но в этом случае ориентация главных осей эллипсоида не совпадает с ориентацией координатных осей. Путем поворота координатных осей уравнение эллипсоида может быть приведено к виду (7.8), в котором отсутствуют смешанные члены.

Корреляционные матрицы, определяющие погрешности элементов и корреляционные связи между ними, находят важное применение при определении погрешностей различных функций этих элементов. Этот вопрос еще будет обсуждаться в следующих параграфах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Астероидно-кометная опасность: вчера, сегодня, завтра»

Представляем Вашему вниманию похожие книги на «Астероидно-кометная опасность: вчера, сегодня, завтра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Астероидно-кометная опасность: вчера, сегодня, завтра»

Обсуждение, отзывы о книге «Астероидно-кометная опасность: вчера, сегодня, завтра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x